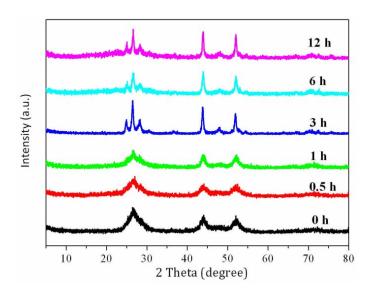
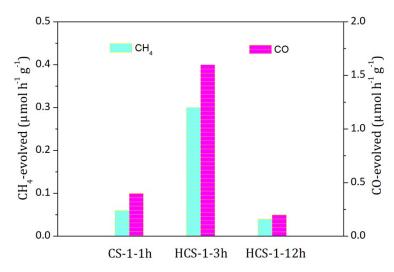
Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2018


Supplementary Information

TEOA-induced in situ formation of wurtzite and zinc-blende CdS heterstructures as a high-active and long-lasting photocatalyst for converting CO₂ into solar fuel


Yao Chai, Jiaxue Lu, Li Li,* Deli Li, Meng Li, and Jun Liang*

State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering,

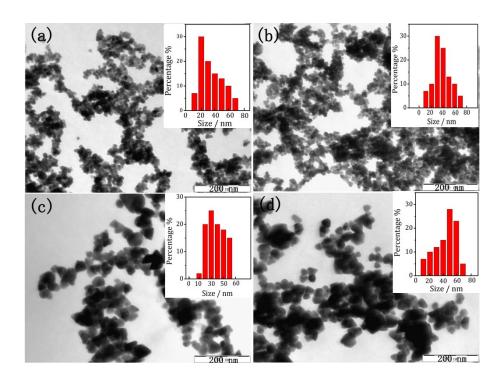

College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China.

Figure S1. The XRD patterns of the products prepared at different hydrothermal treatment time.

Figure S2. The photocatalytic CO-/CH₄-producing rate of heterostructured samples with different hydrothermal reaction time under visible-light irradiation ($\lambda \ge 420$ nm).

Figure S3. The TEM images of the CdS products prepared at different TEOA amounts of $0.5 \, g$ (a), $1.0 \, g$ (b), $3.0 \, g$ (c), and $5.0 \, g$ (d).

Figure S4. The photo of the setup for CO_2 reduction.