Supporting Information (SI)

Hydrodeoxygenation of Guaiacol over Bimetallic Fe-Alloyed (Ni, Pt) Surfaces:

Reaction Mechanism, Transition-State Scaling Relations and Descriptor for Predicting

C-O Bond Scission Reactivity

Xiaoyang Liu^a, Wei An^{a*}, Yixing Wang^a, C. Heath Turner^b, Daniel E. Resasco^c

^aCollege of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Songjiang District, Shanghai 201620, China

^bDepartment of Chemical and Biological Engineering, University of Alabama, Tuscaloosa, AL 35487-0203, United States

^cSchool of Chemical, Biological and Materials Engineering and Center for Biomass Refining, University of Oklahoma, Norman, OK 73019, United States

*E-mail: weian@sues.edu.cn

Figure S1. Side view (top) and top view (bottom) of three-dimensional charge density difference isosurfaces for four hcp/fcc sites of guaiacol adsorbed on NiFe (111). Deep blue: Ni, purple: Fe, deep gray: C, black: H, red: O. The isovalue of isosurfaces: 0.004 e/Bohr³, yellow isosurfaces: gain of electron density, cyan isosurfaces: loss of electron density.

Figure S2. Optimized structures of transitions states (n_m) of elementary steps on (a) NiFe(111) and (b) PtFe(111) discussed in Section 3.2, where n and m represent initial state and final state, respectively, displayed in Figure 1. The numbers in italic denote activation barrier (in eV).

		hcp1/fcc1	hcp1/fcc2	hcp2/fcc1	hcp2/fcc2	gas-phase
	C1-O1	1.39	1.38	1.39	1.38	1.37
NiFe(111	C2-O2	1.41	1.42	1.37	1.41	1.38
)	C7-O2	1.46	1.45	1.44	1.45	1.43
	BE	-1.82	-1.30	-1.45	-1.19	
PtFe(111)	C1-O1	1.36	1.42	1.35	1.37	
	C2-O2	1.41	1.42	1.42	1.41	
	C7-O2	1.45	1.44	1.45	1.45	
	BE	-1.39	-1.22	-1.16	-1.14	

Table S1. C-O bond length (in Å) and binding energy (*BE*, in eV) of guaiacol at different adsorption sites on NiFe(111) and PtFe(111).

Туре	Decident	NiFe	(111)	PtFe(111)	
	Reaction	E_{rxn}	E_a	E_{rxn}	E_a
	$1 \operatorname{C_6H_4(OH)(OCH_3)} \rightarrow 2 \operatorname{C_6H_4(OCH_3)} + \operatorname{OH}$	-0.16	1.42	0.57	2.05
	$1 \text{ C}_6\text{H}_4(\text{OH})(\text{OCH}_3) \rightarrow \textbf{5} \text{ C}_6\text{H}_4(\text{OH}) + \text{OCH}_3$	-0.29	1.37	0.25	1.97
C O gaiagian	$1 \text{ C}_6\text{H}_4(\text{OH})(\text{OCH}_3) \rightarrow 7 \text{ C}_6\text{H}_4(\text{OH})(\text{O}) + \text{CH}_3$	-0.77	0.91	-0.60	1.51
C-O scission	$3 \operatorname{C_6H_4H_\alpha(OH)(OCH_3)} \rightarrow 9 \operatorname{C_6H_5(OCH_3)} + \operatorname{OH}$	-1.27	0.84	-1.09	0.76
	$4 \operatorname{C_6H_4(O)(OCH_3)} \rightarrow 2 \operatorname{C_6H_4(OCH_3)} + \operatorname{O}$	-0.22	1.80	0.44	1.87
	$6 \mathrm{C}_{6}\mathrm{H}_{4}\mathrm{H}_{\beta}(\mathrm{OH})(\mathrm{OCH}_{3}) \rightarrow 10 \mathrm{C}_{6}\mathrm{H}_{5}(\mathrm{OH}) + \mathrm{OCH}_{3}$	-1.14	0.91	-1.05	0.91
	$8 \text{ C}_6\text{H}_4(\text{OH})(\text{OCH}_2) \rightarrow 7 \text{ C}_6\text{H}_4(\text{OH})(\text{O}) + \text{CH}_2$	-0.71	0.54	-0.94	0.69
	$1 \mathrm{C}_{6}\mathrm{H}_{4}(\mathrm{OH})(\mathrm{OCH}_{3}) + \mathrm{H} \rightarrow 3 \mathrm{C}_{6}\mathrm{H}_{4}\mathrm{H}_{\alpha}(\mathrm{OH})(\mathrm{OCH}_{3})$	0.52	1.51	0.58	1.19
C-H formation	$1 \mathrm{C}_6\mathrm{H}_4(\mathrm{OH})(\mathrm{OCH}_3) + \mathrm{H} \rightarrow 6 \mathrm{C}_6\mathrm{H}_4\mathrm{H}_\beta(\mathrm{OH})(\mathrm{OCH}_3)$	0.56	1.54	0.60	1.08
	$2 \operatorname{C_6H_4(OCH_3)} + \operatorname{H} \rightarrow 9 \operatorname{C_6H_5(OCH_3)}$	-0.40	0.55	-1.47	0.37
	$5 \operatorname{C_6H_4(OH)} + \operatorname{H} \rightarrow 10 \operatorname{C_6H_5(OH)}$	-0.53	0.46	0.07	0.41
C-H scission	$1 \text{ C}_6\text{H}_4(\text{OH})(\text{OCH}_3) \rightarrow 8 \text{ C}_6\text{H}_4(\text{OH})(\text{OCH}_2) + \text{H}$	0.22	0.77	0.16	0.68
O-H scission	$1 \text{ C}_6\text{H}_4(\text{OH})(\text{OCH}_3) \rightarrow 4 \text{ C}_6\text{H}_4(\text{O})(\text{OCH}_3) + \text{H}$	-0.72	0.50	0.13	0.85
O-H formation	$7 \operatorname{C_6H_4(OH)(O)} + \operatorname{H} \rightarrow 11 \operatorname{C_6H_4(OH)_2}$	0.51	1.26	0.28	0.93

Table S2. Reaction energy (E_{rxn}) and activation barrier (E_a) with ZPE-correction for deoxygenation of guaiacol on NiFe(111) and PtFe(111).

(A) Monometallic surfaces										
Trme	Ni(111)		Pt(1	Pt(111)		0001)	Pt(111)-p			
Type	BE _{IS}	BE_{TS}	BE _{IS}	BE_{TS}	BE _{IS}	BE_{TS}	BE _{IS}	BE_{TS}		
	-5.06	-4.24	-2.98	-1.94	-4.40	-3.50	-2.26	-1.11		
	-2.62	-1.94	-2.76	-1.76	-3.67	-2.83	-1.58	-0.59		
	-4.95	-3.76	-2.64	-1.68	-3.41	-2.63	-1.34	-0.36		
	-5.18	-4.38	-2.61	-1.50	-3.10	-2.17	-1.15	-0.15		
$(a) \subset \mathbf{H}$			-3.15	-2.35	-5.41	-4.58	-0.90	0.06		
(a) C-H							-2.44	-1.33		
Iormation							-2.18	-1.15		
							-1.93	-1.04		
							-1.66	-0.72		
							-1.29	-0.34		
							-1.10	-0.27		
	BE_{FS}	BE_{TS}	BE_{FS}	BE_{TS}	BE_{FS}	BE_{TS}	BE_{FS}	BE_{TS}		
	-5.18	-4.42	-3.15	-2.97	-5.41	-4.02	-2.26	-1.97		
	-2.93	-2.44					-1.58	-1.32		
(b) O-H	-4.47	-3.94					-1.42	-1.14		
scission	-5.41	-4.71					-1.41	-0.90		
							-0.89	-0.68		
							-0.75	-0.57		
Reference	Liu,	et al. ¹		Tan, et al. ²				Gu, et al. ³		

Table S3 Binding energy (*BE*, in eV) of initial state (BE_{IS}), transition state (BE_{TS}) and final state (BE_{FS}) for two types of reactions (a) and (c): C-H bond formation (black line), (b) and (d): O-H bond scission (blue line), as shown in Figure 9. (A) Monometallic surfaces, (B) Bimetallic surfaces.

(B) Bimetallic surfaces										
Туре	Desetion	Ν	NiFe(11	l)	F	PtFe(111)				
	Reaction	BE _{IS}	BE_{TS}	BE_{FS}	BE _{IS}	BE_{TS}	BE_{FS}			
(c) C-H formation	$C_6H_4(OH)(OCH_3) + H \rightarrow C_6H_4H_{\alpha}(OH)(OCH_3)$	-0.89	0.59	-0.44	-0.63	0.54	-0.13			
	$C_6H_4(OH)(OCH_3) + H \rightarrow C_6H_4H_\beta(OH)(OCH_3)$	-0.89	0.61	-0.45	-0.55	0.53	-0.12			
	$C_6H_4(OH)(OCH_2) + H \rightarrow C_6H_4(OH)(OCH_3)$	-4.72	-4.13	-4.94	-4.11	-3.59	-4.24			
	$C_6H_4(OCH_3) + H \rightarrow C_6H_5(OCH_3)$	-0.55	0.05	-1.12	0.99	1.48	-0.60			
	$C_6H_4(OH) + H \rightarrow C_6H_5(OH)$	-0.55	-0.01	-1.22	-0.67	-0.20	-0.70			
(d) O-H scission	$C_6H_4(OH)(OCH_3) \rightarrow C_6H_4(O)(OCH_3) + H$	-0.96	-0.39	-1.58	-0.50	0.44	-0.24			
	$C_6H_4(OH)_2 \rightarrow C_6H_4(OH)(O) + H$	-1.09	-0.13	-1.54	-0.59	0.25	-0.83			
	$C_6H_5OH \rightarrow C_6H_5O + H$	-1.22	-0.65	-1.81	-0.70	0.09	-0.81			

Table S4 Bond length of C-O (*BL*, in Å), reaction energy (E_{rxn} , in eV), activation barrier (E_a , in eV) and bond dissociation energy (*BDE*, in eV) for C-O bond scission of guaiacol and its derivatives.

Туре	NiFe(111)			PtFe(111)				Gas-phase		
	BL	E_{rxn}	E_a	BL	E_{rxn}	E_a		BL	BDE ^a	
С-ОН	1.39	-0.16	1.42	1.36	0.57	2.05		1.37	4.71	
C-OCH ₃	1.41	-0.29	1.37	1.41	0.25	1.97		1.38	4.04	
O-CH ₃	1.46	-0.77	0.91	1.45	-0.60	1.51		1.43	2.10	
СН-ОН	1.47	-1.27	0.84	1.46	-1.09	0.76				
CH-OCH ₃	1.46	-1.14	0.91	1.46	-1.05	0.91				
C-0	1.34	-0.22	1.80	1.24	0.44	1.87				
O-CH ₂	1.46	-0.71	0.54	1.45	-0.94	0.69				

^{*a*}: Data was retrieved from guaiacol conversion in gas-phase.⁴

REFERENCES

- 1. X. Liu, W. An, C. H. Turner and D. E. Resasco, Hydrodeoxygenation of m-cresol over bimetallic NiFe alloys: Kinetics and thermodynamics insight into reaction mechanism, *J. Catal.*, 2018, **359**, 272-286.
- 2. Q. Tan, G. H. Wang, L. Nie, A. Dinse, C. Buda, J. Shabaker and D. E. Resasco, Different Product Distributions and Mechanistic Aspects of the Hydrodeoxygenation of m-Cresol over Platinum and Ruthenium Catalysts, *ACS Catal.*, 2015, **5**, 6271-6283.
- 3. G. H. Gu, C. A. Mullen, A. A. Boateng and D. G. Vlachos, Mechanism of Dehydration of Phenols on Noble Metals via First-Principles Microkinetic Modeling, *ACS Catal.*, 2016, **6**, 3047-3055.
- 4. A. M. Verma and N. Kishore, DFT Analyses of Reaction Pathways and Temperature Effects on various Guaiacol Conversion Reactions in Gas Phase Environment, *ChemistrySelect*, 2016, **1**, 6196-6205.