Carbon supported perovskite-like CsCuCl₃ nanoparticles: A highly active and cost-effective heterogeneous catalyst in the hydrochlorination of acetylene to vinyl chloride

Yuanyuan Zhai,^a Jia Zhao,^{a,*} Xiaoxia Di,^a Shuxia Di,^a Bolin Wang,^a Yuxue Yue,^a Gangfeng Sheng,^a Huixia Lai,^a Lingling Guo,^a Hong Wang,^a XiaonianLi^{a,*}

^a Industrial Catalysis Institute, Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Zhejiang University of Technology, Hangzhou 310014, China. Tel. /fax: +86 57188320002.

E-mail addresses: jiazhao@zjut.edu.cn (J. Zhao), xnli@zjut.edu.cn (X. Li).

Supporting information

Syntheses of unsupported CsCuCl₃

Cesium cupric chloride (CsCuCl₃) was synthesized in an aqueous solution. The Cs precursor, CsCl, was weighted and dissolved in the deionized water, then the equal molar CuCl₂•2H₂O was added into CsCl solution. After full stirring and dissolving, set the solution quietly at room temperature. CsCuCl₃ crystals readily grew from the solution. After adequate 12h growth, dark yellow CsCuCl₃ crystals can be obtained.

Fig.S1 The preparation procedure of CsCuCl₃ crystals

Figure.S2 H_2 -TPR analysis of unsupported CuCl₂ and CuCsCl₃ crystals