Exceptionally Stable Rh-based Molecular Catalyst Heterogenized on a Cationically charged Covalent Triazine Framework Support for Efficient Methanol Carbonylation

Kwangho Park^a, Sangyup Lim^a, Joon Hyun Baik^b, Honggon Kim^c, Kwang-Deog Jung^c, and Sungho Yoon^{*a}

^a Department of Bio & Nano Chemistry Kookmin University 861-1 Jeongneung-dong, Seongbuk-gu, Republic of Korea

^bClimate and Energy Research group, Research Institute of Industrial Science & Technology (RIST), 67 Cheongam-ro, Pohang 37673, Republic of Korea.

^cClean Energy Research Centre, Korea Institute of Science and Technology, P.O. Box 131, Cheongryang, Seoul 136-791, Republic of Korea

Contents

- 1. Characterization of bpim-CTF support
- 2. Screening catalytic activity according to the catalyst porosity
- 3. SEM and EDS measurements of Rh-bpim-CTF
- 4. Nitrogen physisorption measurements.
- 5. XPS analysis
- 6. FT-IR measurements.
- 7. Methanol carbonylation process
- 8. Feed flow reagents conditions
- 9. Catalytic activity evaluation in various conditions.
- 10. Catalytic activity evaluation with Rh-doped non-charged CTF catalyst
- 11. Thermal stability
- 12. TEM analysis

1. Characterization of bpim-CTF support

Fig S1. SEM & EDS for bpim-CTF support

Fig S2. FT-IR Measurement of bpim-CTF support * The spectra was obtained by ATR technique

Element	Wt%		
С	48.42		
Ν	14.51		
н	4.52		
C/N	3.34		

Table S1. Elemental analysis of bpim-CTF support

Entry	a _{s,BET}	V _{pore, tot} V _{mean}		Conv. ^a	Select.	
	$[m^2 g^{-1}]$	$[cm^3 g^{-1}]$	[nm]	MeOH [%]	MA [%]	AA [%]
Rh-bpim-CTF-400	732	0.31	1.70	31.7	91.1	8.9
Rh-bpim-CTF-500	1650	0.79	1.91	93.0	44.0	56.0

2. Screening catalytic activity according to the catalyst porosity

Reaction conditions: 0.2 g of Rh-bpim-CTFs, $W/F_m = 7.6$, Temperature = 240°C, and Pressure = 10 bar.

Table S2. Pore parameters of bpim-CTF support synthesized at differenttemperatures, and catalytic activity evaluation.

3. SEM and EDS measurements for Rh-bpim-CTF

Figure S3. SEM & EDS mapping of Rh-bpim-CTF

4. Nitrogen physisorption measurements.

Figure S4. Nitrogen sorption isotherms of bpim-CTF support and Rh-bpim-CTF at $$77\ensuremath{\,\mathrm{K}}$$

5. XPS analysis

Figure S5. XPS of Rh-bpim-CTF (top), $[Rh(CO)_2I]_2$ (middle), and $RhCl_3 xH_2O$ (bottom).

Figure S6. Deconvoluted C 1s (top left), N 1s (top right) spectrum of Rh-bpim-CTF and Rh 3d5 spectrum of [Rh(CO)₂I]₂ (bottom left) and RhCl₃ xH₂O.

	C1s ^a	N1s ^a	O1sª	Rh3d5ª	l3d5 ^a
Rh-bpim-CTF	64.6	10.0	12.1	6.3	8.0
[Rh(CO) ₂ I] ₂	89.9	0	6.2	1.9	2.0

Table S3. Atomic composition of Rh-bpim-CTF and [Rh(CO)₂I]₂ by XPS

^aAtomic %;

6. FT-IR measurements.

Figure S7. FT-IR spectrum of Rh-bpim-CTF

* The spectra was obtained by ATR technique

7. Methanol carbonylation process.

Figure S8. Schematic diagram of gas-phase methanol carbonylation using Rh-bpim-CTF

8. Feed flow reagents conditions

CO ^a	$N_2^{\ a}$	MeOH ^b	MeI ^b	F _m ^c	W/F _m ^d
[ml n	nin ⁻¹]	[ml h	$[ml h^{-1}]$		$[g h mol^{-1}]$
52.0	6.00	4.24	0.64	0.104	1.9
39.0	4.50	3.18	0.48	0.078	2.5
26.0	3.00	2.12	0.32	0.052	3.8
13.0	1.50	1.06	0.16	0.026	7.6

Table S4. Feed flow reagents conditions

^aVolume of gas phase feed reagents per hour ^bVolume of liquid-phase feed reagents per hour ^cMole quantity of methanol feed flow per hour ^dW/F_m = 0.2 g (amount of catalyst) / desired F_m

9. Catalytic activity evaluation in various conditions.

Figure S9. Methanol conversion, methyl acetate and acetic acid selectivities over the Rhbpim-CTF according to the effect of the temperature (top left), pressure (top right), contact time of feed flow (bottom center) carbonylation

10. Catalytic activity evaluation with Rh-doped non-charged CTF catalyst

Figure S10. Methanol conversion(black), methyl acetate(red) and acetic acid(blud) selectivities over the Rh-bpy-CTF with continuous flow methanol carbonylation * Reaction conditions: 0.2 g of Rh-bpim-CTFs, $W/F_m = 7.6$, Temperature = 240°C, and Pressure = 10 bar.

11. Thermal stability analysis

Figure S11. Isothermal TGA measurement of Rh- bpim-CTF at 240 °C

12. TEM analysis

Figure S12. HR-TEM image with low magnification (left), high magnification (top right), and HADDF-TEM image (bottom right) of Rh-bpim-CTF after continuous methanol carbonylation