Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2018

Supporting Information

Development of hydroxy-containing imidazole organocatalysts for CO₂ fixation into cyclic carbonates

José A. Castro-Osma,^a Javier Martínez,^b Felipe de la Cruz-Martínez,^b María P. Caballero,^b Juan Fernández-Baeza,^b Julián Rodríguez-López,^b Antonio Otero,^{*b} Agustín Lara-Sánchez^{*b} and Juan Tejeda^{*b}

^aUniversidad de Castilla-La Mancha, Departamento de Química Inorgánica, Orgánica y Bioquímica-Centro de Innovación en Química Avanzada (ORFEO-CINQA), Facultad de Farmacia, 02071-Albacete, Spain.

^bUniversidad de Castilla-La Mancha, Departamento de Química Inorgánica, Orgánica y Bioquímica-Centro de Innovación en Química Avanzada (ORFEO-CINQA), Facultad de Ciencias y Tecnologías Químicas, 13071-Ciudad Real, Spain. E-mail: <u>Antonio.Otero@uclm.es</u>

Table of Contents

Experimental Section	S1
NMR Spectra for 5-(2-Hydroxyphenyl)-1-phenyl-1H-imidazole 3	S5
NMR Spectra for 5-(2-Hydroxyphenyl)-1-butyl-1 <i>H</i> -imidazole 4	S6
NMR Spectra for 1-butyl-4-(2-Hydroxyphenyl)-3-phenyl-1 <i>H</i> -imidazolium bromide 7	S7
NMR Spectra for 1-butyl-4-(2-Hydroxyphenyl)-3-phenyl-1 <i>H</i> -imidazolium iodide 8	S8
NMR Spectra for 1-butyl-4-(2-Hydroxyphenyl)-3-butyl-1H-imidazolium iodide 9	S9
NMR Spectra for 1,2-hexylene carbonate 6a	S10
NMR Spectra for propylene carbonate 6b	S11
NMR Spectra for 1,2-butylene carbonate 6c	S12
NMR Spectra for 1,2-decylene carbonate 6d	S13
NMR Spectra for styrene carbonate 6e	S14
NMR Spectra for 4-chlorostyrene carbonate 6f	S15
NMR Spectra for 4-bromostyrene carbonate 6g	S16
NMR Spectra for 3-chloropropylene carbonate 6h	S17
NMR Spectra for glycerol carbonate 6i	S18
NMR Spectra for 3-phenoxypropylene carbonate 6j	S19
NMR Spectra for <i>cis</i> -cyclopentene carbonate 11a	S20
NMR Spectra for <i>cis</i> -cyclohexene carbonate 11b	S21
NMR Spectra for (2-oxo-1,3-dioxolan-4-yl)methyl furan-2-carboxylate 11c	S22
NMR Spectra for 4-(furan-2-ylmethoxy)-1,3-dioxolan-2-one 11d	S23
NMR Spectra for 4,4'-((furan-2,5diylbis(methylene))bis(oxy))bis(1,3-dioxolan-2-one) 11e	S24
NMR Spectra for bis((2-oxo-1,3-dioxolan-4-yl)methyl) fumarate 11f	S25
NMR Spectra for bis((2-oxo-1,3-dioxolan-4-yl)methyl) succinate 11g	S26
NMR Spectra for bis((2-oxo-1,3-dioxolan-4-yl)methyl) glutarate 11h	S27
¹ H-NMR spectrum for compound 9 in CDCl ₃	S28
¹ H-NMR spectrum for compound 9 + CO ₂ at 80 °C and t = 24h in CDCI ₃	S28
NMR spectra for compound 9 + epoxide 5e at r.t. and t = 0h in CDCI ₃	S29
NMR spectra for compound 9 + epoxide 5e at 80 °C and t = 1h in $CDCI_3$	S31
¹ H-NMR spectrum for compound 9 + epoxide 5e + CO ₂ at 80 °C and t = 1h in CDCl ₃	S33
References	S34

Experimental Section

All commercially available epoxide substrates and reagents (Alfa, Aldrich, Fluka) were used as received unless specified otherwise. Epoxides from which cyclic carbonates **11d–11h** were synthesized and *N*-butyl-2-hydroxybenzylideneamine were prepared according to previously reported procedures.^[1] Carbon dioxide was purchased from Air Liquide and used without further purification. Solvents were distilled from appropriate drying agents and degassed before use. Microanalyses were carried out with a Perkin-Elmer 2400 CHN analyzer. ¹H and ¹³C NMR spectra were recorded on a Varian Inova FT-500 (¹H NMR: 500 MHz; ¹³C NMR: 125 MHz) spectrometer and referenced to the residual deuterated solvent and recorded at room temperature. IR spectra were obtained on a Shimadzu IR Prestige-21 spectrophotometer equipped with a Pike Technology ATR system.

Synthesis of 5-(2-hydroxyphenyl)-1-phenyl-1*H***-imidazole (3). A mixture of commercial salicylidene aniline (3.02 g, 15.31 mmol), TosMIC (3.87 g, 19.82 mmol), K₂CO₃ (6.32 g, 45.73 mmol) and MeOH (60 mL) was heated under reflux with stirring for 3 h. The mixture was allowed to cool, and the solvent was evaporated under reduced pressure to give a dark brown oil that solidified after the addition of water (60 mL). The product was filtered off, washed with CH_2CI_2, and dried to afford 3.07 g (85%) of the title compound as an orange solid. An analytically pure sample was obtained by recrystallization from ethyl acetate. (3.07 g, 85%). Mp 223–224 °C. Found: C, 76.31; H, 5.28; N, 11.75. Calc. for C_{15}H_{12}N_2O: C, 76.25; H, 5.12; N, 11.86%. ¹H NMR (500 MHz, CDCI₃): 6.41 (1H, br s, OH), 6.79 (1H, dt, J=7.5 and 1.0 Hz), 6.91 (1H, dd,** *J***=7.5 and 1.5 Hz), 6.94 (1H, d,** *J***=8.0 Hz), 7.14-7.17 (2H, m), 7.22 (1H, dt,** *J***=7.5 and 1.5 Hz), 7.28 (1H, s, H4_{Im}), 7.31-7.38 (3H, m), 7.79 (1H, s, H2_{Im}). ¹³C{¹H} NMR and DEPT (125 MHz, CDCI₃) 154.2 (C), 138.9 (CH), 136.2 (C), 131.3 (CH), 130.3 (CH), 129.8 (CH), 129.4 (CH), 128.1 (CH), 127.6 (C), 124.9 (CH), 120.2 (CH), 116.0 (CH), 115.6 (C). IR (neat) 3059 (br, OH), 1497, 1279, 754, 694 cm⁻¹.**

Synthesis of 5-(2-hydroxyphenyl)-1-butyl-1*H*-imidazole (4). А mixture N-butyl-2of hydroxybenzylideneamine (2.59 g, 14.61 mmol), TosMIC (3.71 g, 18.99 mmol), K₂CO₃ (6.06 g, 43.84 mmol) and MeOH (60 mL) was heated under reflux with stirring for 3 h. The mixture was allowed to cool, and the solvent was evaporated under reduced pressure to give a dark brown oil that solidified after the addition of water (60 mL). The product was filtered off, washed with diethyl ether, and dried to afford 2.82 g (89%) of the title compound as an orange solid. An analytically pure sample was obtained by recrystallization from ethyl acetate. Mp 175-176 °C. Found: C, 72.25; H, 7.53; N, 12.83. Calc. for C₁₃H₁₆N₂O: C, 72.19; H, 7.46; N, 12.95%. ¹H NMR (500 MHz, CDCl₃) 0.80 (3H, t, *J* = 7.5 Hz, CH₃), 1.18 (2H, m, C<u>H</u>₂CH₃), 1.55 (2H, m, C<u>H</u>₂CH₂CH₃), 3.85 (2H, t, J = 7.5 Hz, 2H, NCH₂), 6.93 (1H, t, J = 7.5 Hz, ArH), 6.96 (1H, s, H5_{in}), 7.06 (1H, d, J = 8.0 Hz ArH), 7.15 (1H, dd, J = 7.5 and 1.5 Hz, ArH), 7.31 (1H, dt, J = 7.8 and 1.5 Hz, ArH), 6.40 (1H, br s, OH), 7.52 (1H, s, H2_{in}). ¹³C{¹H} NMR and DEPT (125 MHz, CDCl₃) □ 55.4 (C), 137.7 (CH), 131.7 (CH), 130.6 (CH), 128.5 (C), 128.2 (CH), 119.9 (CH), 116.6 (CH), 116.4 (C), 45.2 (CH₂), 32.7 (CH₂), 19.6 (CH₂), 13.4 (CH₃). IR (neat) 3059 (br, OH), 1497, 1477, 1448, 1435, 1279, 930, 754, 694, 656 cm⁻¹.

Synthesis of 1-butyl-4-(2-hydroxyphenyl)-3-phenyl-1*H*-imidazolium bromide (7). A suspension of bromobutane (10 mL) and 5-(2-hydroxyphenyl)-1-phenyl-1*H*-imidazole (2) (600 mg, 2.54 mmol) was heated at 100 °C for 7 h, resulting in the formation of a brown precipitate. After completion of the reaction, the mixture was cooled to room temperature. The excess bromobutane was evaporated under reduced pressure and the residue was washed with diethyl ether (3 × 20 mL). Pure product was obtained as a yellow solid (673 mg, 71%). An analytically pure sample was obtained by recrystallization from a mixture of chloroform-diethyl ether. Mp 188-190 °C. Found: C, 61.32; H, 5.81; N, 7.42. Calc. for $C_{19}H_{21}BrN_2O$: C, 61.13; H, 5.67; N, 7.50%. ¹H NMR (500MHz, [D₆]DMSO) 0.96 (3H, t, *J* = 7.5 Hz, CH₃), 1.40 (2H, m,

 $C\underline{H_2}CH_3$), 1.93 (2H, m, $C\underline{H_2}CH_2CH_3$), 4.30 (2H, t, J = 7.5 Hz, NCH₂), 6.82-6.85 (2H, m, ArH), 7.17 (1H, dd, J = 7.5 and 1.5 Hz, ArH), 7.27 (1H, dt, J = 7.8 and 2.0 Hz, ArH), 7.39-7.41 (2H, m, ArH), 7.47-7.51 (3H, m, ArH), 8.09 (1H, d, J = 1.0 Hz, H5_{im}), 9.71 (1H, d, J = 1.5 Hz, H2_{im}), 9.98 (1H, s, OH). ¹³C{¹H} NMR and DEPT (125MHz, [D₆]DMSO) 155.6 (C), 136.7 (CH), 134.5 (C), 131.9 (CH), 131.7 (CH), 131.4 (C), 129.8 (CH), 129.5 (CH), 125.1 (CH), 121.5 (CH), 119.1 (CH), 115.8 (CH), 112.2 (C), 49.1 (CH₂), 31.1 (CH₂), 18.9 (CH₂), 13.4 (CH₃). IR (neat) 3055 (br, OH), 1587, 1555, 1454, 1348, 1271, 1177, 762, 692, 635 cm⁻¹.

Synthesis of 1-butyl-4-(2-hydroxyphenyl)-3-phenyl-1*H***-imidazolium iodide (8)**. A suspension of 1-iodobutane (10 mL) and 5-(2-hydroxyphenyl)-1-phenyl-1*H*-imidazole (3) (544 mg, 2.3 mmol) was heated at 100 °C for 7 h, resulting in the formation of a brown precipitate. The mixture was allowed to cool and the excess 1-iodobutane was evaporated under reduced pressure. The residue was washed with diethyl ether (3 × 20 mL) and filtered off to afford 925 mg (96%) of the title compound as a yellow solid. An analytically pure sample was obtained by recrystallization from a mixture of chloroform-diethyl ether. Mp 179-181 °C. Found: C, 54.10; H, 4.94; N, 6.60. Calc. for $C_{19}H_{21}IN_2O$: C, 54.30; H, 5.04; N, 6.67% ¹H NMR (500MHz, [D₆]DMSO) 0.96 (3H, t, *J* = 7.5 Hz, CH₃), 1.39 (2H, m, C<u>H</u>₂CH₃), 1.91 (2H, m, C<u>H</u>₂CH₂CH₃), 4.26 (2H, t, *J* = 7.5 Hz, NCH₂), 6.61 (1H, d, *J* = 8.5 Hz, ArH), 6.66 (1H, t, *J* = 7.5 Hz, ArH), 7.07 (1H, d, *J* = 7.0 Hz, ArH), 7.15 (1H, t, *J* = 7.5 Hz, ArH), 7.41-7.43 (2H, m, ArH), 7.46-7.51 (3H, m, ArH), 8.02 (1H, d, *J* = 1.5 Hz, H2_{im}). ¹³C{¹H} NMR (125MHz, [D₆]DMSO) 158.8, 136.8, 135.1, 132.9, 132.1, 131.8, 130.2, 129.9, 125.6, 121.6, 117.4, 116.9, 112.7, 49.5, 31.6, 19.4, 13.8. IR (neat) 3100 (br, OH), 1592, 1544, 1494, 1455, 1384, 1176, 761 cm⁻¹.

Synthesis of 1-butyl-4-(2-hydroxyphenyl)-3-butyl-1*H***-imidazolium iodide (9). A suspension of 1-iodobutane (10 mL) and 1-butyl-5-(2-hydroxyphenyl)-1***H***-imidazole (4) (560 mg, 2.6 mmol) was heated at 100 °C for 7 h, resulting in the formation of a brown precipitate. The mixture was allowed to cool and the excess 1-iodobutane was evaporated under reduced pressure. The residue was washed with diethyl ether (3 × 20 mL) and filtered off to afford 910 mg (87%) of the title compound as a yellow solid. An analytically pure sample was obtained by recrystallization from ethyl acetate. Mp 126-127 °C. Found: C, 51.18; H, 6.36; N, 6.95. Calc. for C_{17}H_{25}IN_2O: C, 51.01; H, 6.30; N, 7.00%. ¹H NMR (500MHz, CDCl₃) 0.76 (3H, t,** *J* **= 7.5 Hz, CH₃), 0.96 (3H, t,** *J* **= 7.5 Hz, CH₃), 1.16 (2H, m, C<u>H</u>₂CH₃), 1.40 (2H, m, C<u>H</u>₂CH₃), 1.66 (2H, m, C<u>H</u>₂CH₂CH₃), 1.92 (2H, m, C<u>H</u>₂CH₂CH₃), 4.10 (2H, t,** *J* **= 7.5 Hz, NCH₂), 4.32 (2H, t,** *J* **= 7.5 Hz, NCH₂), 6.95 (1H, t,** *J* **= 7.5 Hz, ArH), 7.14 (1H, dd,** *J* **= 8.0 and 1.5 Hz, ArH), 7.26 (1H, d,** *J* **= 2.0 Hz, H4_{im}), 7.37 (1H, dt,** *J* **= 7.5 and 1.5 Hz, ArH), 7.59 (1H, d,** *J* **= 7.5 Hz, ArH), 8.32 (1H, s, OH), 9.84 (1H, d,** *J* **= 1.5 Hz, H2_{im}). ¹³C{¹H</sup>} NMR and DEPT (125MHz, CDCl₃) 155,3 (C), 135.7 (CH), 133.4 (C), 132.6 (CH), 131.3 (CH), 120.3 (CH), 119.8 CH), 117.6 (CH), 111.7 (C), 49.9 (CH₂), 47.9 (CH₂), 32.1 (CH₂), 31.8 (CH₂), 19.5 (CH₂), 9.4 (CH₂), 13.5 (CH₃), 13.3 (CH₃). IR (neat) 3105 (br, OH), 1599, 1545, 1500, 1450, 1389, 11646, 769 cm⁻¹.**

General procedure for synthesis of cyclic carbonates at 10 bar pressure. An epoxide **5a**–**j** or **10a**–**h** (1.66 mmol), a combination of catalysts **3**–**4** (1.6–16.6 μ mol) and Bu₄NBr or Bu₄NI (1.6–16.6 μ mol) or bifunctional catalysts **7–9** (12.4-16.6 μ mol) were placed in a stainless steel reactor with a magnetic stirrer bar. The reaction mixture was heated to 80–90 °C, then pressurised to 10 bar of carbon dioxide pressure and stirred for 1–2 h. The conversion of epoxide to cyclic carbonate was then determined by analysis of a sample by ¹H NMR spectroscopy. The remaining sample was filtered through a plug of silica, eluting with CH₂Cl₂ to remove the catalyst. The eluent was evaporated *in vacuo* to give either the pure cyclic carbonate or a mixture of cyclic carbonate and unreacted epoxide. In the latter case, the mixture was purified by flash chromatography using a solvent system of first hexane, then hexane:EtOAc (9:1), then hexane:EtOAc (3:1), then EtOAc to give the pure cyclic carbonate. Cyclic carbonates **6a–j** or **11a-h** are all known compounds and the spectroscopic data were consistent with those reported in the literature.^[1b,2]

1,2-Hexylene carbonate (**6a**). Obtained as a colourless liquid (214.8 mg, 90%). ¹H NMR (500 MHz, CDCl₃) 4.61 (1H, qd, *J* = 7.5, and 5.4 Hz, OCH), 4.45 (1H, t, *J* = 8.1 Hz, OCH₂), 4.00 (1H, dd, *J* = 8.4 and 7.2 Hz, OCH₂), 1.60-1.80 (2H, m, CH₂), 1.20-1.40 (4H, m, CH₂), 0.86 (3H, t, *J* = 7.1 Hz, CH₃). ¹³C{¹H} NMR (125 MHz, CDCl₃) 155.1, 77.0, 69.4, 33.5, 26.4, 22.2, 13.7. IR (neat) 2941, 2922, 2899, 1796 cm⁻¹.

Propylene carbonate (6b). Obtained as a colourless liquid (121.3 mg, 71%). ¹H NMR (500 MHz, CDCl₃) 4.80-4.90 (1H, m, OCH), 4.54 (1H, t, J = 8.3 Hz, OCH₂), 4.00 (1H, dd, J = 8.3 and 7.4 Hz, OCH₂), 1.46 (3H, d, J = 6.3 Hz, CH₃). ¹³C{¹H} NMR (125 MHz, CDCl₃) 155.1, 73.6, 70.7, 19.4. IR (neat) 2961, 2902, 1781 cm⁻¹.

1,2-Butylene carbonate (**6c**). Obtained as a colourless liquid (174.8 mg, 90%). ¹H NMR (500 MHz, CDCl₃) 4.50-4.70 (1H, m, OCH), 4.52 (1H, t, *J* = 8.1 Hz, OCH₂), 4.08 (1H, dd, *J* = 6.3 and 5.3 Hz, OCH₂), 1.70-1.80 (2H, m, CH₂) 1.03 (3H, t, *J* = 7.1 Hz, CH₃). ¹³C{¹H} NMR (125 MHz, CDCl₃) 155.2, 78.1, 69.1, 27.0, 8.6. IR (neat) 2938, 2917, 1801 cm⁻¹.

1,2-Decylene carbonate (6d). Obtained as a colourless liquid (286.0 mg, 86%). ¹H NMR (500 MHz, CDCl₃) 4.60-4.70 (1H, m, OCH), 4.52 (1H, dd, *J* = 8.4 and 7.8 Hz, OCH₂), 4.06 (1H, dd, *J* = 8.4 and 7.2 Hz, OCH₂), 1.60-1.90 (2H, m, CH₂), 1.20-1.60 (12H, m, CH₂), 0.88 (3H, t, *J* = 6.8 Hz, CH₃). ¹³C{¹H} NMR (125 MHz, CDCl₃) 155.0, 77.0, 69.4, 33.8, 31.8, 29.3, 29.2, 29.1, 24.4, 22.7, 14.0. IR (neat) 2916, 2851, 1800 cm⁻¹.

Styrene carbonate (**6e**). Obtained as a white solid. (232.0 mg, 85%). Mp 49-51 °C. ¹H NMR (500 MHz, CDCl₃) 7.30-7.50 (5H, m, ArH), 5.68 (1H, t, *J* = 8.0 Hz, PhC<u>H</u>O), 4.81 (1H, t, *J* = 8.4 Hz, OCH₂), 4.35 (1H, t, *J* = 8.6 Hz, OCH₂). ¹³C{¹H} NMR (125 MHz, CDCl₃) 154.8, 135.8, 129.7, 129.2, 125.8, 77.9, 71.2. IR (neat) 3060, 3029, 2961, 2903, 1791, 1599 cm⁻¹.

4-Chlorostyrene carbonate (**6f**). Obtained as a white solid. (302.5 mg, 91%). Mp 66-69 °C. ¹H NMR (500 MHz, CDCl₃) 7.40 (2H, d, *J* = 8.5 Hz, ArH), 7.29 (2H, d, *J* = 8.5 Hz, ArH), 5.65 (1H, t, *J* = 7.9 Hz, OCH), 4.79 (1H, t, *J* = 8.4 Hz, OCH), 4.29 (1H, t, *J* = 7.8 Hz, OCH₂). ¹³C{¹H} NMR (125 MHz, CDCl₃) 154.6, 135.7, 134.3, 129.4, 127.3, 76.8, 71.0. IR (neat) 2973, 2698, 2121, 2017, 1971, 1793 cm⁻¹.

4-Bromostyrene carbonate (**6**g). Obtained as a white solid. (322.40 mg, 96%). Mp 72-75 °C. ¹H NMR (500 MHz, CDCl₃) 7.34 (2H, dd, *J* = 8.1 and 2.0 Hz, ArH), 7.23 (2H, dd, *J* = 8.4 and 1.8 Hz, ArH), 5.59 (1H, t, *J* = 7.9 Hz, OCH), 4.73 (1H, t, *J* = 8.4 Hz, OCH₂), 4.23 (1H, t, *J* = 7.8 Hz, OCH₂). ¹³C{¹H} NMR (125 MHz, CDCl₃) 154.5, 135.7, 134.2, 129.4, 127.3, 77.2, 71.0. IR (neat) 2951, 2522, 2161, 2017, 1981, 1801, 1771 cm⁻¹.

3-Chloropropylene carbonate (**6**h). Obtained as a colourless liquid. (198.5 mg, 82%). ¹H NMR (500 MHz, CDCl₃) 4.98 (1H, m, OCH), 4.59 (1H, t, J = 8.5 Hz, CH₂Cl), 4.42 (1H, dd, J = 9.0 and 8.7 Hz, CH₂Cl), 3.79 (1H, dd, J = 12.0 and 6.5 Hz, CH₂O), 3.76 (1H, dd, J = 12.5 and 4.0 Hz, CH₂O). ¹³C{¹H} NMR (125 MHz, CDCl₃) 154.2, 74.3, 67.0, 43.7. IR (neat) 3451, 1971, 1803 cm⁻¹.

Glycerol carbonate (**6i**). Obtained as a colourless liquid (76.2 mg, 93%). ¹H NMR (500 MHz, [D₆]DMSO) 5.23 (1H, t, J = 5.5, OH), 4.70-4.80 (1H, m, OCH), 4.47 (1H, t, J = 8.3 Hz, CH₂O), 4.26 (1H, dd, J = 8.1 and 5.8 Hz, CH₂O), 3.64 (1H, ddd, J = 12.5, 5.5 and 2.6 Hz, CH₂OH), 3.49 (1H, ddd, J = 12.6, 5.6 and 3.3 Hz, CH₂OH). ¹³C{¹H} NMR (125 MHz, [D₆]DMSO) 155.6, 77.4, 66.3, 61.0. IR 3382, 2901, 1799 cm⁻¹.

3-PhenoxyproplyIene carbonate (**6j**). Obtained as a white solid. (305.0 mg, 94%). Mp 94-97 °C. ¹H NMR (500 MHz, CDCl₃) 7.20-7.30 (2H, m, ArH), 7.03 (1H, t, *J* = 7.5 Hz, ArH), 6.90-7.00 (2H, m, ArH), 5.00-5.10 (1H, m, OCH), 4.50-4.60 (2H, m, OCH₂), 4.23 (1H, dd, *J* = 10.6 and 4.2 Hz, CH₂OPh), 4.15 (1H, dd, *J* =

10.6 and 3.6 Hz, C<u>H</u>₂OPh). ¹³C{¹H} NMR (125 MHz, CDCl₃) 157.7, 154.6, 129.7, 122.0, 114.6, 74.1, 66.9, 66.2. IR (neat) 3429, 3061, 2989, 2924, 2328, 1791 cm⁻¹.

cis-1,2-Cyclopentene carbonate (11a). Obtained as a white solid. (169.7 mg, 80%). Mp 30–33 °C. ¹H NMR (400 MHz, CDCl₃) 5.10 (m, 2H, CHO), 2.15 (2H, m, CH₂), 1.60–1.80 (4H, m, CH₂). ¹³C{¹H} NMR (100 MHz, CDCl₃) 155.4, 81.8, 32.2, 21.6. IR (neat) 2967, 2871, 1789 cm⁻¹.

cis-1,2-Cyclohexene carbonate (11b). Obtained as a white solid. (114.7 mg, 49%). Mp 35–37 °C. ¹H NMR (400 MHz, CDCl₃) 4.60–4.70 (m, 2H, CHO), 1.80–1.90 (4H, m, CH₂CHO), 1.50–1.60 (2H, m, CH₂), 1.40–1.50 (2H, m, CH₂). ¹³C{¹H} NMR (100 MHz, CDCl₃) 155.3, 75.7, 26.7, 19.1. IR (neat) 2933, 2861, 1784 cm⁻¹.

(2-oxo-1,3-dioxolan-4-yl)methyl furan-2-carboxylate (11c). Obtained as a white solid (305.8 mg, 94%). Mp 95-98 ^oC. ¹H NMR (400 MHz; CDCl₃) 7.61 (s, 1H, OCH=CH), 7.22 (s, 1H, CH=CH), 6.53 (s, 1H, CH=CH), 5.04 (m, 1H, OCH), 4.62 (m, 1H, OCH₂), 4.60-4.40 (m, 2H, CH₂), 4.38 (m, 1H, OCH₂); ¹³C{¹H} NMR (100 MHz; CDCl₃) 157.8, 154.4, 147.3, 143.3, 119.4, 112.2, 73.8, 66.1, 63.3. IR (neat) 2980, 2860, 1783, 1717 cm⁻¹.

4-(furan-2-ylmethoxy)-1,3-dioxolan-2-one (**11d**). Obtained as a colourless liquid (325.7 mg, 99%). ¹H NMR (400 MHz; CDCl₃) 7.48 (s, 1H, OC<u>H</u>=CH), 6.35 (s, 2H, CH=CH), 4.77 (m, 1H, OCH), 4.30-4.60 (4H, m, OCH₂), 3.60-3.80 (2H, m, CH₂). ¹³C{¹H} NMR (100 MHz; CDCl₃) 154.8, 150.6, 143.2, 110.4, 110.1, 74.8, 68.4, 66.3, 65.3. IR (neat) 2960, 2899, 1784 cm⁻¹.

4,4'-((Furan-2,5diylbis(methylene))bis(oxy))bis(1,3-dioxolan-2-one) (**11e**). Obtained as a colourless liquid (485.0 mg, 89%). ¹H NMR (400 MHz; CDCl₃) 6.31 (s, 2H, CH=CH), 4.79 (2H, m, OCH), 4.30–4.60 (8H, m, OCH₂), 3.60-3.80 (4H, m, OCOCH₂). ¹³C{¹H} NMR (100 MHz; CDCl₃) 154.9, 151.45, 110.8, 75.0, 68.6, 66.1, 65.3. IR (neat) 2871, 2771, 1789 cm⁻¹.

Bis((2-oxo-1,3-dioxolan-4-yl)methyl) fumarate (**11f**). Obtained as a white solid. (446.2 mg, 85%). Mp 135–138 °C. ¹H NMR (400 MHz. [D₆]DMSO) 6.77 (s, 2H, CH=CH), 5.10 (m, 2H, OCH), 4.30-4.60 (m, 8H, OCH₂). ¹³C{¹H} NMR (100 MHz. [D₆]DMSO) 164.2, 155.1, 133.5, 74.5, 66.4, 64.9. IR (neat) 1778, 1723 cm⁻¹.

Bis((2-oxo-1,3-dioxolan-4-yl)methyl) succinate (11g). Obtained as a white solid. (501.8 mg, 95%). Mp 115–118 °C. ¹H NMR (400 MHz; [D₆]DMSO) 5.05 (2H, m, OCH), 4.20–4.60 (8H, m, OCH₂), 2.63 (4H, br s, COCH₂). ¹³C{¹H} NMR (100 MHz; [D₆]DMSO) 172.0, 155.1, 74.7, 66.4, 64.0, 28.8. IR (neat) 2910, 2850, 1782, 1731 cm⁻¹.

Bis((2-oxo-1,3-dioxolan-4-yl)methyl) glutarate (**11h**). Obtained as a white solid. (508.2 mg, 95%). Mp 105–108 °C. ¹H NMR (400 MHz; [D₆]DMSO) 5.05 (2H, m, OCH), 4.20–4.60 (8H, m, OCH₂), 2.41 (2H, m, COCH₂), 1.76 (2H, m, COCH₂CH₂). ¹³C{¹H} NMR (100 MHz; [D₆]DMSO) 172.5, 155.1, 74.7, 66.4, 63.8, 32.6, 20.0. IR (neat) 2855, 1780, 1735 cm⁻¹.

NMR Spectra for 5-(2-Hydroxyphenyl)-1-phenyl-1H-imidazole 3

NMR Spectra for 1-butyl-4-(2-Hydroxyphenyl)-3-phenyl-1*H*-imidazolium bromide 7

NMR Spectra for 1-butyl-4-(2-Hydroxyphenyl)-3-phenyl-1*H*-imidazolium iodide 8

NMR Spectra for propylene carbonate $\mathbf{6b}$ in CDCI_3

NMR Spectra for 1,2-butylene carbonate **6c** in CDCl₃

NMR Spectra for 1,2-decylene carbonate 6d in CDCl₃

(

0.

NMR Spectra for styrene carbonate $\mathbf{6e}$ in CDCI_3

NMR Spectra for 4-chlorostyrene carbonate 6f in CDCl₃

NMR Spectra for 3-chloropropylene carbonate $\mathbf{6h}$ in CDCl₃

NMR Spectra for *cis*-cyclohexene carbonate **11b** in $CDCI_3$

NMR Spectra for 4-(furan-2-ylmethoxy)-1,3-dioxolan-2-one $\mathbf{11d}$ in CDCl₃

NMR Spectra for 4,4'-((furan-2,5diylbis(methylene))bis(oxy))bis(1,3-dioxolan-2-one) **11e** in $CDCI_3$

NMR Spectra for bis((2-oxo-1,3-dioxolan-4-yl)methyl) fumarate **11f** in DMSO-d₆

NMR Spectra for bis((2-oxo-1,3-dioxolan-4-yl)methyl) glutarate 11h in CDCl₃

NMR spectra for compound 9 + epoxide 5e at r.t. and t = 0h in CDCl₃

NMR spectra for compound **9** + epoxide **5e** at 80 °C and t = 1h in $CDCI_3$

¹H-NMR spectrum for compound **9** + epoxide **5e** + CO₂ at 80 °C and t = 1h in CDCl₃

References

[1] a) J. M. Kerr, C. J. Suckling, *J. Chem. Soc. Perkin Trans.* 1990, 887-895; b) J. Martínez, J. Fernández-Baeza, L. F. Sánchez-Barba, J. A. Castro-Osma, A. Lara-Sánchez, A. Otero, *ChemSusChem* 2017, **10**, 2886-2890

[2] a) M. North, R. Pasquale, *Angew. Chem. Int. Ed.* 2009, 48, 2946-2948; b) W. Clegg, R. W. Harrington, M. North, R. Pasquale, *Chem. Eur. J.* 2010, **16**, 6828-6843; c) C. J. Whiteoak, E. Martin, E. Escudero-Adán, A. W. Kleij, *Adv. Synth. Catal.* 2013, **355**, 2233-2239; d) C. J. Whiteoak, N. Kielland, V. Laserna, F. Castro-Gómez, E. Martin, E. C. Escudero-Adán, C. Bo, A. W. Kleij, *Chem. Eur. J.* 2014, **20**, 2264-2275; e) C. J. Whiteoak, E. Martin, M. M. Belmonte, J. Benet-Buchholz, A. W. Kleij, *Adv. Synth. Catal.* 2012, **354**, 469-476; f) J. Qin, P. Wang, Q. Li, Y. Zhang, D. Yuan, Y. Yao, *Chem. Commun.* 2014, **50**, 10952-10955; g) B. Gabriele, R. Mancuso, G. Salerno, L. Veltri, M. Costa, A. Dibenedetto, *ChemSusChem* 2011, **4**, 1778-1186; h) A. Buonerba, A. De Nisi, A. Grassi, S. Milione, C. Capacchione, S. Vagin, B. Rieger, *Catal. Sci. Technol.* 2015, **5**, 118-123.