Electronic Supplementary Information

ZnMn₂O₄ Nanorods: An Effective Fenton-like Heterogeneous Catalyst with $t_{2g}^{3}e_{g}^{1}$ Electronic Configuration

Maoqin Qiu, ^a Zhangxian Chen,*^a Zeheng Yang,*^a Wenming Li, ^a Yuan Tian, ^a Weixin Zhang,*^a Yishu Xu^a and Hansong Cheng^b

a School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, China 230009

b Sustainable Energy Laboratory, Faculty of Material Science and Chemistry, China University of Geosciences (Wuhan), 388 Lumo Road, Wuhan, China 430074

Corresponding authors: Tel.:+86 0551 62901450; fax:+86 0551 62901450. Email address: <u>zehengyang@hfut.edu.cn</u> (Z.H. Yang); <u>zxchen@hfut.edu.cn</u> (Z.X. Chen); <u>wxzhang@hfut.edu.cn</u> (W.X. Zhang)

EXPERIMENTAL AND COMPUTIONAL DETAILS

Characterizations

The crystal phases of the samples were determined by X-ray diffraction (XRD) on a Rigaku D/max- γ B X-ray diffractometer (Cu K α source, λ = 0.154178 nm), operating at 40 kV and 80 mA. Morphologies and structures were characterized by field-emission scanning electron microscopy (FESEM, Hitachi SU8020). The Raman spectra were recorded on a LabRam HR Evolution (HORIBA, France) equipped with a CCD detector using a laser source (λ_{ex} = 633 nm) at room temperature. N₂ adsorption-desorption isotherms were collected on a Quantachrome NOVA 2200e surface area and pore size analyzer at liquid nitrogen temperature. All samples were degassed at 120 °C for 2 h prior to the measurements. The specific surface area and the average pore diameter were calculated by the multi-point Brunauer-Emmett-Teller

(BET) equation and the Barrett-Joyner-Halenda (BJH) method, respectively.

Computational Details

Periodic density functional theory computations were performed using VASP code implemented with the projector augmented wave method to describe the electron-ion interactions.¹⁻⁴ The exchange-correlation potential was expressed using the Perdew-Burke-Ernzerhof functional incorporated in the generalized gradient approximation.⁵ The Hubbard U correction for Mn 3d orbitals was applied to include the strong on-site Coulomb interaction.⁶ A U-J value of 5 eV was found to be sufficient to give reasonable lattice constants and minority spin band gap of about 2.9 eV, in consistence with the reported work.⁷ The geometric structures were optimized with the convergence criteria of total energy less than 10⁻⁵ eV and total force less than 0.01 eV/Å on each atom. The Brillouin zone was sampled using the Monkhorst-Pack k-point meshes of $7 \times 7 \times 5$ for structural optimization and $13 \times 13 \times 9$ for static calculation. The semi core 3p states of Mn were also treated as valence states.

Fig. S1 XPS spectra of ZnMnO₃ nanorods: (a) Zn 2p; (b) O 1s.

Fig. S2 (a) N_2 absorption-desorption isothermal curves and (b) the corresponding pore size distributions of different catalysts.

Table S1 The specific surface area and average pore size of as-prepared catalysts.		
Sample	Specific Surface Area	Pore Volume
	$(m^2 g^{-1})$	$(cm^3 g^{-1})$
$ZnMn_2O_4$ nanorods	17.3	0.22
ZnMnO ₃ nanorods	10.6	0.11

References

- 1 G. Kresse, J. Furthmüller, Comp. Mater. Sci., 1996, 6, 15-50.
- 2 G. Kresse, J. Furthmüller, Phys. Rev. B, 1996, 54, 11169-11186.
- 3 P.E. Blöchl, Phys. Rev. B, 1994, 50, 17953-17979.
- 4 G. Kresse, D. Joubert, Phys. Rev. B, 1999, 59, 1758-1775.
- 5 J. P. Perdew, K. Burke and M. Ernzerhof, Phys. Rev. Lett., 1996, 77, 3865-3868.
- 6 S. L. Dudarev, G. A. Botton, S. Y. Savrasov and C. J. Humphreys, Phys. Rev. B, 1998, 57, 1505-1509.
- 7 H. C. Choi, J. H. Shim and B. I. Min, Phys. Rev. B, 2006, 74, 172103.