SUPPORTING INFORMATION

Investigating *Saccharomyces cerevisiae* Alkene Reductase OYE 3 by Substrate Profiling, X-Ray Crystallography and Computational Methods

Robert W. Powell, III, M. Pilar Buteler[†], Sunidhi Lenka[†], Michele Crotti^{†,‡}, Sara Santangelo^{†,‡}, Matthew J. Burg, Steven Bruner, Elisabetta Brenna[‡], Adrian E. Roitberg and Jon D. Stewart*

Department of Chemistry, 126 Sisler Hall, University of Florida, Gainesville, FL 32611 USA

[‡]Dipartimento di Chimica, Materiali ed Ingegneria Chimica "Giulio Natta" Politecnico di Milano, Via Mancinelli 7, I-20131, Milano, Italy.

Phone & Fax 352.846.0743, E-mail jds2@chem.ufl.edu

*Author to whom correspondence should be addressed

[†]These authors contributed equally to this work

Experimental details

Growth media. LB medium contained 5 g / L Bacto-Yeast Extract, 10 g / L Bacto-Tryptone and 10 g / L NaCl. SOC medium contained 5 g / L Bacto-Yeast Extract, 20 g / L Bacto-Tryptone, 10 mM NaCl, 2.5 mM KCl, 10 mM MgCl₂, 10 mM MgSO₄ and 20 mM glucose. ZYP-5052 autoinduction medium³² contained 10 g / L tryptone, 5 g / L yeast extract, 1 mM MgSO₄, 25 mM (NH₄)₂SO₄, 50 mM KH₂PO₄, 50 mM Na₂HPO₄, 5 g / L glycerol, 0.5 g / L anhydrous glucose and 2 g / L α -lactose monohydrate.

OYE 3 purification. E. coli BL21 (DE3) harboring plasmid pRP4 was grown at 37° C in a 4 L fermenter containing LB medium supplemented with 200 μ g/mL ampicillin. Cells were grown in the fermenter with 600 rpm stirring for 2 h to achieve mid log phase then induced by adding IPTG and glucose to final concentrations of 0.4 and 100 mM, respectively. Growth was continued at 30° C and 600 rpm stirring for an additional 3 h. The culture was chilled at 4° C for 30 min before centrifugation at 5,000 × g for 10 min at 4°C.

All purification steps were carried out at $0 - 4^{\circ}$ C. The cell pellet (22 g wet cell weight) was resuspended in 22 mL of 100 mM Tris-Cl, pH 8.0 supplemented with 10 µM PMSF. Cells were lysed by a French pressure cell (12,000 psi), then the lysate was centrifuged at 18,000 × g for 60 min to remove insoluble debris. Nucleic acids were precipitated from the supernatant by adding protamine sulfate to a final concentration of 1 mg / mL and stirring for 20 min at 4°C. After centrifuging at 18,000 × g for 20 min, proteins were precipitated from the supernatant by adding solid (NH₄)₂SO₄ (in 5 equal portions) to 78% saturation. Proteins were recovered by centrifuging at 18,000 × g for 60 min.

The ammonium sulfate pellet was resuspended in 22 mL of 100 mM Tris-Cl, 100 mM $(NH_4)_2SO_4$, 10 μ M PMSF, pH 8.0, then dialyzed against 1 L of this buffer overnight. The

dialysate was then transferred to a fresh portion of the same buffer (1 L) supplemented with 10 mM sodium dithionite and dialyzed for 2 h to reduce the FMN cofactor and release any endogenous phenolic ligands present during protein overexpression. This step was repeated, then the dialysate was then transferred to a fresh portion of the same buffer lacking dithionite (1 L). After 2 h, a final dialysis was carried out overnight against the same buffer (1 L) of buffer without dithionite. During the final two dialyses, the protein solution became strongly yellow, indicating FMN re-oxidation. The dialysate was centrifuged at 18,000 × *g* for 30 min to remove insoluble debris, then 10 mL portions were applied to a 3 mL *N*-(4-hydroxybenzoyl)aminohexyl agarose affinity column⁴² that had been equilibrated with 100 mM Tris-Cl, 100 mM (NH₄)₂SO₄, 10 μ M PMSF, pH 8.0. OYE 3 binding turned the column green. After washing with 30 mL of starting buffer to remove unbound protein, OYE 3 was eluted by washing with 10 mL of 100 mM Tris-Cl, 100 mM (NH₄)₂SO₄, 10 μ M PMSF, 0.5 g / L of dithionite, pH 8.0. Fractions containing OYE 3 were pooled and further purified by gel filtration with a Superdex 200 column (Pharmacia) that had been equilibrated with 50 mM Tris-Cl, 50 mM NaCl, pH 7.5.

Protein sequence alignments

80.5	응	identity in	n 399 r	esidues	overlap	; Scoi	re: 17	735.0;	Gap	freque	ency:	0.09	-10
OYE OYE	1 3	1 1	MSFVKD MPFVKG * ***	FKPQALGI FEPISLRI * * * *	OTNLFKPI OTNLFEPI ***** **	KIGNNI KIGNT(****	ELLHRA QLAHRA * ***	AVIPPL AVMPPL ** ***	TRMRA TRMRA ****	LHPGNI THPGNI	IPNRDU IPNKEU	VAVE VAAV * *	(YTQ (YGQ ** *
OYE	1	61	RAORPG'	TMIITEGA	AFISPOAG	GYDNAI	GVWSE	EEOMVE	WTKIF	NAIHER	KSFV	VOL	VVLG
OYE	3	61	RAQRPG'	TMIITEG: ******	TFISPQAG *****	GYDNAI ****	PGIWSI ** **	DEQVAE	WKNIF * **	LAIHD(***	CQSFAU **	VVQLV * * * *	VSLG * **
OYE	1	121	WAAFPD	NLARDGLI	RYDSASDN	VFMDAI	EQEAKA	AKKANN	PQHSL	TKDEI	QYIKI	EYVQA	4AKN
OYE	3	121	WASFPD ** ***	VLARDGLI *****	RYDCASDR *** ***	VYMNA: * * *	FLQEKA * *	4KDANN ** ***	LEHSL ***	TKDDI! *** **	CQYIKI ****	OYIHA * *	\AKN * * * *
OYE	1	181	SIAAGA	DGVEIHSA	ANGYLLNÇ	FLDPH	SNTRTI	DEYGGS	IENRA	RFTLEV	VDALV	/EAI	JHEK
OYE	3	181	SIAAGA *****	DGVEIHS2 ******	ANGYLLNÇ * * * * * * * *	FLDPH:	SNKRTI ** ***	DEYGGT * * * * *	'IENRA ****	RFTLE\ *****	/VDAL: ****	EETI(* **	3PER * *
OYE	1	241	VGLRLS	PYGVFNSI	MSGGAETG	IVAQY	AYVAGE	ELEKRA	KAGKR	LAFVHI	VEPRV	/TNPI	FLTE
OYE	3	241	VGLRLS: *****	PYGTFNSI *** ***	MSGGAEPG ***** *	IIAQY: * ***	SYVLGE ** **	ELEKRA * * * * * *	KAGKR ****	LAFVHI	UVEPRV	/TDP\$ ** *	3LVE * *
OYE	1	301	GEGEYE	GGSNDFV	YSIWKGPV	IRAGNI	FALHPE	EVVREE	VKDKR	TLIGY	GRFFIS	SNPDI	LVDR
OYE	3	301	GEGEYS: ****	EGTNDFA: * ***	YSIWKGPI ******	IRAGN:	YALHPE ****	EVVREQ * * * * *	VKDPR *** *	TLIGY(*****	GRFFI:	SNPDI * * * * *	JVYR ** *
OYE	1	361	LEKGLP	LNKYDRD	FFYQMSAH	GYIDYI	PTYEE	ALKLGW	DKK				
OYE	3	361	LEEGLP: ** ***	LNKYDRS:	FYTMSAE * * * * * *	GYTDYI ** **	PTYEE# * * * * * *	AVDLGW	NKN *				

OYE 1 versus OYE 2

92.0)%	identity	in 399	residues	overlap;	Score:	1969.0;	; Gap	freque	ncy:	0.0%	
OYE	1		1 MSFV	KDFKPQALG	DTNLFKPIK	IGNNELL	HRAVIPPI	TRMR	ALHPGNI	PNRD	WAVEYY	ГQ
OYE	2		1 MPFV * **	KDFKPQALG ******	DTNLFKPIK *******	IGNNELL ******	HRAVIPPI *******	LTRMR#	AQHPGNI * *****	PNRD ****	WAVEYY2 *****	AQ *
OYE	1	6	1 RAQR	PGTMIITEG	AFISPQAGG	YDNAPGV	WSEEQMVE	EWTKII	NAIHEK	KSFV	WVQLWVI	LG
OYE	2	6	1 RAQR ****	PGTLIITEG *** ****	TFPSPQSGG * *** **	YDNAPGI	WSEEQIKE *****	EWTKII *****	FKAIHEN	KSFA ***	WVQLWV] ******	'G ∗ *
OYE	1	12	1 WAAF	PDNLARDGL	RYDSASDNV	FMDAEQE	AKAKKANN	JPQHSI	TKDEIK	QYIK	EYVQAAI	ΧN
OYE	2	12	1 WAAF ****	PDTLARDGL	RYDSASDNV ******	YMNAEQE: * ****	EKAKKANN ******	NPQHS1	ITKDEIK *****	QYVK ** *	EYVQAAI	<n * *</n
OYE	1	18	1 SIAA	GADGVEIHS	ANGYLLNQF	LDPHSNT	RTDEYGGS	SIENRA	ARFTLEV	VDAL	VEAIGHI	ΞK
OYE	2	18	1 SIAA ****	GADGVEIHS	ANGYLLNQF *****	LDPHSNN *****	RTDEYGGS * * * * * * * * *	SIENRA *****	ARFTLEV * * * * * * *	VDAV ***	VDAIGPI * ***	ΞK * *
OYE	1	24	1 VGLR	LSPYGVFNS	MSGGAETGI	VAQYAYV	AGELEKRA	AKAGKI	RLAFVHL	VEPR	VTNPFL	ΓЕ
OYE	2	24	1 VGLR ****	LSPYGVFNS *******	MSGGAETGI *****	VAQYAYV: ******	LGELERRA **** **	\KAGKI * * * * * *	RLAFVHL * * * * * * *	VEPR' ****	VTNPFL: *****	ГЕ * *
OYE	1	30	1 GEGE	YEGGSNDFV	YSIWKGPVI	RAGNFAL	HPEVVREE	EVKDKF	RTLIGYG	RFFI	SNPDLVI	DR
OYE	2	30	1 GEGE ****	YNGGSNKFA * **** *	YSIWKGPII ******	RAGNFAL	HPEVVREE * * * * * * * * *	EVKDPF	RTLIGYG ******	RFFI:	SNPDLVI * * * * * * *)R * *
OYE	1	36	1 LEKG	LPLNKYDRD	TFYQMSAHG	YIDYPTY	EEALKLGV	VDKK				
OYE	2	36	1 LEKG ****	LPLNKYDRD ******	TFYKMSAEG *** *** *	YIDYPTY: ******	EEALKLGV * * * * * * * * *	VDKN * * *				

Supporting Information Table 1. Conversion data for Trp 116 site-saturation mutagenesis data for OYE 3 and OYE 1. Reactions that yield products from "flipped" substrate binding orientations are shown in red, and key results are highlighted by grey shading.

		%	ee		%de					
Amino acid at position 116	о — — — — — — — — — — — — — — — — — — —		о — Он 6			° , 7				
	OYE 3	OYE 1 ^a	OYE 3	OYE1 ^ª	OYE 3	OYE 1 ^b	OYE 3	OYE 1 ^b		
W (wt)	^c	51%			74%	91%	13%	94%		
Α	20%	>98%	16%	84%		93%	8% (cis)	77%		
С		47%	12%	31%	18%	13%				
D		95%		>98%	25%	32%	24%	54%		
E	47%	96%	47%	93%	37%	15%	37%			
F	49%	98%	33%	>98%	73%	76%	29%	92%		
G	12%	>98%	12%	98%	31%	26%	16%			
н	77%	>98%	93%	>98%	64%	20%	28%	76%		
I		>98%		>98%	24%	90%	816%	79%		
к		75%		60%	16%		15%	18%		
L	40%	>98%	48%	>98%	89%	96%	20%	97%		
м	29%	>98%	50%	>98%	77%	86%	25%	87%		
N	53%	>98%	45%	>98%	44%	81%	20%	82%		
Р		16%		14%	19%	86%	38%	75%		
Q	62%	>98%	76%	>98%	47%	89%	25%	78%		
R					20%		20%			
S		87%	15%	84%	14%	41%	25%			
Т	12%	44%	16%	28%	22%	32%	32%			
V	30%	97%	13%	84%	46%	93%	17%	72%		
Y	82%	>98%	34%	>98%	43%	49%	14%	93%		

^aWalton, A.Z.; Conerly, W.C.; Pompeu, Y.A.; Sullivan, B.; Stewart, J.D. ACS Catal. **2011**, *1*, 989-993.

^bPompeu, Y.A.; Sullivan, B.; Stewart, J.D. ACS Catal. **2013**, *3*, 2376-2390.

 $^{c} \leq 10\%$ substrate conversion after 24 hr was observed.

Amino acid at position 116	0 	0	0 17	18	0
W (wt)	47%	95%	53%	^a	
Α	36%	59%	42%		
С	26%	86%	37%		21%
D	22%	34%	39%		
E	19%	72%	41%		
F	29%	60%	50%		
G	15%	55%	31%		
Н	30%	70%	37%		
I	32%	67%	52%		
к	44%	24%	28%		
L	36%	53%	54%		
М		88%	51%	11%	
N	72%	91%	50%		
Р	45%	67%	57%	22%	
Q	30%	73%	43%		
R	28%	36%	51%		
S	44%	51%	24%		
Т	40%	58%	47%	20%	
V		65%	41%		
Y	50%	58%	38%		

Supporting Information Table 2. Conversion data for substrates 15 – 19 reduced by OYE 3 Trp 116 variants.

 $a \le 10\%$ substrate conversion after 24 hr was observed.

Example of modeled OYE 3 / substrate complexes in both potential binding orientations.

110 100 f1 (ppm) . 90 . 70 . 50 . 30 . 10