Supplementary material

Tuning micromorphology and exposed facets of MnO_x promotes methyl ethyl ketone low-temperature abatement: Boosting oxygen activation and electron transmission

Yanfei Jian¹, Changwei Chen¹, Mudi Ma¹, Chao Liu², Yanke Yu¹, Jie Cheng³, Chi He^{1,*}, Zhengping Hao³

¹Department of Environmental Science and Engineering, State Key Laboratory of Multiphase

Flow in Power Engineering, School of Energy and Power Engineering, Xi'an Jiaotong University,

Xi'an 710049, Shaanxi, P.R. China

²Department of Environmental Engineering and Earth Sciences, Clemson University, Anderson, South Carolina 29625, United States

³National Engineering Laboratory for VOCs Pollution Control Material & Technology, University of Chinese Academy of Sciences, Beijing 101408, P.R. China

*To whom correspondence should be addressed:

Tel./Fax: +86 29 8266 3857; E-mail: chi_he@xjtu.edu.cn (C. He)

Contents

Figure S1 N₂ adsorption/desorption isotherms of various catalysts.

Figure S2 TGA profiles of the fresh and used MnO_x -S (A), MnO_x -C (B), and MnO_x -R (C) samples.

Figure S3 Mn 2p XPS spectra of the used catalysts.

Figure S4 XRD patterns of the used samples.

Figure S5 Relationship between the calculated adsorption energy (E_{ads}) and T_{90} temperature for

MEK oxidation.

Figure S6 Temperature-programmed surface reaction (TPSR) of MEK oxidation over different catalysts.

Table S1 XPS results of the used catalysts.

Figure S1 N_2 adsorption/desorption isotherms of various catalysts.

Figure S2 TGA profiles of the fresh and used MnO_x -S (A), MnO_x -C (B), and MnO_x -R (C)

samples.

Figure S3 Mn 2p XPS spectra of the used catalysts.

Figure S4 XRD patterns of the used samples.

Figure S5 Relationship between the calculated adsorption energy (E_{ads}) and T_{90} temperature for MEK oxidation.

Figure S6 Temperature-programmed surface reaction (TPSR) of MEK oxidation over different catalysts.

Sample -	Binding Energy (eV)			Molar ratio	
	Mn ₃ O ₄	Mn ³⁺	Mn ⁴⁺	Mn ⁴⁺ /Mn ³⁺	Mn ⁴⁺ /Mn ₃ O ₄
MnO _x -W-used	641.4	/	642.8	/	0.72
MnO _x -S-used	641.4	/	642.8	/	1.49
MnO _x -C-used	/	641.6	642.7	0.68	/
MnO _x -R-used	/	641.5	642.8	0.65	/

 Table S1 XPS results of the used catalysts.