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Catalyst characterization

X-ray diffraction (XRD) patterns were recorded in the 26 range of 5-80° with a scan speed of
2°/min on a PANalytical X’PERT PRO diffractometer using Cu Ka radiation (A=0.1542 nm, 40
kV, 40 mA). Nitrogen adsorption measurements were performed at 73 K by Quantachrome
Instruments, Autosorb-1Q volumetric adsorption analyzer. Sample was degassed at 573 K for 3 h
in the degas port of the adsorption apparatus. The specific surface area of the material was
calculated from the adsorption data points obtained at P/P, between 0.05-0.3 using the Brunauer-
Emmett-Teller (BET) equation. The pore diameter was estimated using the non local density
function theory (NLDFT) and Barret-Joyner—Halenda (BJH) methods. Scanning electron
microscopy (SEM) measurements were carried out on a JEOL JSM-6610LV to investigate the
morphology of the materials. For deeper understanding structural analysis were carried out using
a FEI, TF30-ST transmission electron microscope (TEM) operating at 300 kV equipped with a
scanning unit and a high-angle annular dark field (HAADF) detector from Fischione (model
3000). The compositional analysis was performed using energy dispersive X-ray (EDX, EDAX )
spectroscopy attachment on the TF30. Sample was dispersed in ethanol using ultrasonic bath,
and dispersed sample was mounted on a carbon coated Cu grid, dried, and used for TEM
measurement. Temperature-programmed desorption (TPD) experiments were conducted on a
Quantachrome ChemBET™ TPR/TPD instrument. In a typical TPD experiments, 100 mg of
sample was placed in a U-shaped, flow through, quartz sample tube. The catalyst was pretreated
in He (30 mL/min) at required temperature for 1 h. After cooling down to desired temperature,
ammonia (partial pressure 100 Torr) was adsorbed on the samples for 1 h. The sample was
subsequently flushed by He stream (30 mL/min) at desired temperature for 1 h to remove
physisorbed ammonia. The TPD experiments were carried out in the different range at a heating
rate of 10 K/min. The ammonia concentration in the effluent was monitored by using a gold-
plated, filament thermal conductivity detector. X-ray photoelectron spectroscopy (XPS)
measurements were carried out on PHI 5000 Versa Prob II, FEI Inc. at ACMS, IIT Kanpur.
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Fig. S1 'H-NMR of 5-hydroxymethylfurfural (HMF).
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Fig. S3 XRD patterns of H-Beta and Ru(3%)/H-Beta prepared in this study.
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Fig. S4 XRD patterns of Ru nanoparticles supported H-Beta samples prepared in this study.
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Fig. S5 (a) EDAX spectrum obtained during the SEM analysis of Ru(3%)/H-Beta; (b) SEM
images of the recycled catalyst.
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Fig. S6 NH;-TPD profile of H-Beta investigated in this study.
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Fig. S8 'H NMR spectra recorded during one-pot conversion of sucrose to HMF.
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Fig. S12 XRD patterns of fresh and recycled Ru(3%)/H-Beta recovered after fifth cycles after 5%
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Table S1 Comparative catalytic activity of various reported Ruthenium supported heterogeneous
catalysts in the transformation of HMF to DFF.

o
o
HO/\@/% o7 T %

HMF DFF
S.N Reaction condition DFF yield Reference
(o)
1 84.6 50

HMF (2.0 mmol), -catalyst
[Ru@mPMF, (Ru content =
4.20%), poly-melamine
formaldehyde polymer (mPMF)
(50 mg)], toluene (10 mL), O, (2
MPa, 12 h, 378 K.
2 HMF (1 mmol), DMF (3 mL), 92 31
393 K, 6 h, O, flow (20 mL/ min),
catalyst [Rw/HT (4.4 wt % Ru)
(0.1 g)]
3 HMF (1 mmol), DMF (3 mL), 36 31
393 K, 6 h, O, flow (20 mL/min),
catalyst [Ru/AlLL,O; (5 wt% Ru)
(0.1 g)]
4  HMF (1 mmol), DMF (3 mL), 72 31
393 K, 6 h, O, flow (20 mL/min),
catalyst [ Ru/Mg(OH),, 4.2 wt%
Ru) (0.1 g)]
5 HMF (1 mmol), DMF (3 mL), 76 31
393 K, 6 h, O, flow (20 mL/min),
catalyst [Ru/C, 5 wt% Ru)]
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10

11

12

v-Fe,O;@HAP-Ru (150 mg), Ru
content (2 wt %), HMF (100 mg),
4-chlorotoluene (7 mL), O, (20

mL/min").
HMF (100 mg, 0.8 mmol) and
catalyst Fe;04@Si10,-NH,-

Ru(III) (100 mg) (0.3 wt % Ru.)
toluene (7 mL), 383 K, 12 h, O,
flow (20 mL min')

[Catalyst (HMF/metal molar
ratio= 40:1, CTF= covalent
triazine framework, Ru content
(3.71%)], 1 h, 353 K, air (20 bar)
methyl t-butyl ether (MTBE) (15
mL).

HMF (63 mg, 0.5 mmol) and
catalyst SBA-15-Bisimidazole-Ru
catalyst (2.0 wt% Ru) (50 mg). p-
chlorotoluene (8 mL), 383 K, 12
h, O, (15 bar).

HMF (1.0 mmol), HMF/metal =
80/1 (mol/mol), toluene (10 mL),
383 K, O, (2.0 MPa), Catalyst
(Ru/C).

HMF (0.5 mol), Ru/ y-Al,O3 (200
mg, 1.8 wt% Ru), toluene (15
mL), O, (40 psi), 393 K, 4 h.
HMF (63 mg, 0.5 mmol), Ru-
PVP/CNT (60 mg, 2.2 wt% Ru),
DMF (5 mL), O, (2.0 MPa), 393

81.4

85.9

63.6

88.7

28.86

97.3

94
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51

21b

38
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13

K, 12 h.

HMF (1 mmol), DMSO (5 mL), 90.2
413 K, 24 h, O, bubbling (20

mL/min), catalyst Ru(3%)/H-

Beta, 2.75 wt% Ru (EDAX study)

(120 mg).

This study
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Table S2 Comparative catalytic activity of various reported heterogeneous catalysts in the
transformation of fructose to 2,5-diformylfuran (DFF).

—
HO 0 ‘\\\\OH 0

HO  TOH
Fructose DFF
S. N Reaction condition DFF Reference
yield
(%)

1 Fructose (0.2 g), DMSO (2 mL), N, atmosphere 69 55
(2 h), O, (20 mL min’, 17 h), carbonaceous
catalyst CCSO;H-NH, (60 mg).

2 Fructose (1.11 mmol, 0.2 g), DMF (3 mL), 373 49 31
K, 3 h, N; flow (20 mL/min), catalyst Amberlyst-
15 (0.1 g), RwHT (0.2 g).

3 Fructose (0.1 g) (~0.1 equiv) Fe;04,-SBA-SOsH, 80 25
0.1 g (~0.75 equiv) K-OMS-2 (0.1 g), DMSO (3
mL), 10 mL min™' O,, 2 h in air, 383 K, O, flow
for 8 h.

4 Fructose (1 mmol), solvent (DMSO, 3 mL), O, 63.1 43
balloon (1 bar), 408 K, 3.5 h, catalyst, (PIJEVPI-
Br and a-CuV,0¢ (50 mg and 90 mg)

5  Fructose (0.5 mmol), catalyst (SBA-15- 72.4 38
Biimidazole-Ru catalyst) (120 mg), of DMSO (1
mL) at 383 K, p-chlorotoluene (7 mL), 2 h, and
then 12 h under 20 bar O, pressure.

6  Fructose (0.8 mmol, 143 mg), DMSO (1 mL) and 79.1 26

4-chlorotoluene (4 mL), catalyst
Fe;0,@Si10,SO;H (150 mg), 383 K, second step:
v-Fe,O3@HAP-Ru (150 mg), with an O, flow
rate of 20 mL/min.
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10

11

12

13

14

15

Fructose (145 mg), DMSO and 4-chlorotoluene,
temperature 383 K, for 2 h; catalyst polyaniline—
VO(acac); (80 mg), 383 K, O, flow (30 mL/min),
time (14 h).

Fructose (1.11 mmol, 200 mg), -catalyst
Cs3H,PMo;¢ V2049 (150 mg), DMSO (2 mL), 2 h
at 383 K under N, (0.1 MPa), then reaction was
further performed at 393 K for 6 h under O, (0.1
MPa).

Fructose (0.5 mmol, 90 mg), catalyst Fe;04-GO-
SOsH (50 mg, 0.078 mmol SO;H), DMSO (1
mL), 383 K for 2 h under an air atmosphere.
Fe;04-RGO-SO;H was separated using magnet.
Finally, ZnFe;¢sRuy3504 (0.128 mmol Ru, 100
mg), DMSO (1 mL), and 1 mL H,0, and then
stirred for 16 h at 403 K, O, flow (20 mL/ min).

Fructose (2 mmol, 360 mg); DMSO (4 mL);
catalyst, GO (20 mg); 413 K; N, or O, (20
mL/min).

Fructose (200 mg), catalyst, V-g-CsN4 (H+) (100
mg), DMSO (2 mL), 403 K, After 2 h reaction
under N; (0.1 MPa), and O, (0.1 MPa).

Fructose (1.2 mmol), catalyst Fe/C-S (metal 20
mol%), ethanol (2 mL), 393 K, N, (3 bar) for 2 h
and then changed to O, (1 bar) for 3 h, 6 h and
then changed to O, (3 bar) for 8 h

Fructose (45.0 mg), catalyst PMo;, HPA. (2.5
mg), DMSO (1 mL), 433 K, 2 h, in air.

Fructose (200 mg), DMSO (5 mL), O,= 20 mL
/min, Catalyst Cr-MIL-101-Encapsulated Keggin
Phosphomolybdic Acid (40 mg), 423 K, 7 h,

Fructose (200 mg); DMSO, 5 mL; catalyst
Sulfonated MoOs;—ZrO, (10 mg); O, = 20
mL/min; 423 K; 10 h.
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16

17

18

19

14

Fructose (200 mg), catalyst MoO;-containing
protonated nitrogen doped carbon (20 mg),
DMSO (5 mL), O; (20 mL/min), 423 K, 9 h.

Fructose (180 mg), Catalyst bifunctional f-
CeyMo0,0;, (Mo loading 6 mol %), DMSO (4

mL), 393 K, N, 10 mL min™!, and O, 10 mL min-
1

Fructose (1.0 mmol), catalyst [100 mg, 0.04
mmol,VO(salen) and 0.025 mmol tungstic acid],

H,0, (1.0 mmol, added
after 1 h), isopropanol (solvent), 353 K (for initial
1 h) and 333 K (for

subsequent 15 h).

Fructose, (90 mg); H,SO; (0.05 M),
V,0s/ceramic (100 mg); DMSO (4 mL); O, (40
mL/min), 5 h.

Fructose (1 mmol), DMSO (5 mL), temperature
(393 K), time (1 h) under N, flow (10 mL/min),
first step no catalyst. For second step, catalyst
Ru(3%)/Beta (120 mg) was added and reaction
was carried out at 413 K for 24 h at an O, flow
rate of 10 mL/min.

77

74

70

68.4

79.7

33

42

36

35

This study
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Table S3 Comparative catalytic activity of present catalyst systems and Ru(3%)/H-Beta for the

one-pot two-step conversion of sucrose to 2,5-diformylfuran over various reported catalysts.

CH,0H

H oM cHoH
OH H o O N
o ° —~ o \/J ©
OH
CH,OH
H OH
OH

Sucrose

DFF

E.N Reaction condition

DFF yield
(%)

Reference

1

Sucrose  (45.0 mg),
catalyst PMo,HPA (2.5
mg), DMSO (I mL),
433 K, 2 h, in air.
Sucrose (0.1 g), of V-
containing Beta catalyst
(0.1 g), of H,SO,4 (0.15
g), 403 K, and O,
balloon, 6 h.

Sucrose (1  mmol),
DMSO (5 mL),
temperature (393 K),
time (6 h), Ru(3%)/H-
Beta (120 mg) under N,
flow (10 mL/min).
Second step was carried
out at 413 K for 24 h at
an O, flow rate of 10
mL/min.

28

39.5

66.8

70

71

This study

S24



