Supporting Information

In-situ surface engineering of ultrafine Ni₂P nanoparticles on cadmium sulfide for robust hydrogen evolution

Junfang Wang, Peifang Wang*, Jun Hou, Jin Qian, Chao Wang, Yanhui Ao*

Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, No.1, Xikang road, Nanjing, 210098, China

^{*} Corresponding author. Tel./ fax: +86 25 83787330,

E-mail address: andyao@hhu.edu.cn (Yanhui Ao), pfwang2005@hhu.edu.cn (Peifang Wang)

catalyst	Light source (wavelength)	Scavenger	H ₂ evolution rate (mmol g ⁻¹ h ⁻	AQY(%)	Ref.
Ni/CdS	≥420 nm	TEOA	0.471	Not given	[1]
Ni ₂ P@CdS	≥430 nm	None	0.838	3.89	[2]
FeP/CdS	≥420 nm	lactic acid	21.6	Not given	[3]
CdS/ZnS	≥420 nm	Na ₂ S-Na ₂ S O ₃	0.792	Not given	[4]
3D NiO-CdS	≥420 nm	Na ₂ S-Na ₂ S O ₃	0.745	6.02	[5]
MoS2/CdS	≥420 nm	Na ₂ S-Na ₂ S O ₃	4.77	Not given	[6]
TiO ₂ -CdS@g- C ₃ N ₄	≥420 nm	Na ₂ S-Na ₂ S O ₃	1.504	11.9	[7]
Ni(OH) ₂ - CdS/g-C ₃ N ₄	≥420 nm	Na ₂ S-Na ₂ S O ₃	115.18	16.7	[8]
Cu ₂ MoS ₄ /CdS	≥420 nm	lactic acid	15.56	Not given	[9]
CdS@Mo ₂ C- C	≥420 nm	Na ₂ S-Na ₂ S O ₃	17.24	Not given	[10]
Ni ₂ P-CdS	≥420 nm	Na ₂ S-Na ₂ S O ₃	34.9	21.7	This work

Table S1 Comparison of photocatalytic H₂ evolution activities of CdS-based photocatalysts.

References

[1] H. Yang, Z.L. Jin, K. Fan, D.D. Liu, G.X. Lu, The roles of Ni nanoparticles over CdS nanorods for improved photocatalytic stability and activity, Superlattices &

Microstructures, 111 (2017) 687-695.

[2] W. Zhen, X. Ning, B. Yang, Y. Wu, Z. Li, G. Lu, The enhancement of CdS photocatalytic activity for water splitting via anti-photocorrosion by coating Ni₂P shell and removing nascent formed oxygen with artificial gill, Applied Catalysis B Environmental, 221 (2017) 243-257.

[3] J. Li, J. Lin, Facile fabrication of FeP/CdS for H₂ evolution, Materials Letters, 221
(2018) 289–292.

[4] Y.P. Xie, Z.B. Yu, G. Liu, X.L. Ma, H.M. Cheng, CdS–mesoporous ZnS core– shell particles for efficient and stable photocatalytic hydrogen evolution under visible light, Energy & Environmental Science, 7 (2014) 1895-1901.

[5] Z. Khan, M. Khannam, N. Vinothkumar, M. De, M. Qureshi, Hierarchical 3D NiO–CdS heteroarchitecture for efficient visible light photocatalytic hydrogen generation, Journal of Materials Chemistry, 22 (2012) 12090-12095.

[6] J.H. Xiong, Y.H. Liu, D.K. Wang, S.J. Liang, W.M. Wu, L. Wu, An efficient cocatalyst of defect-decorated MoS_2 ultrathin nanoplates for the promotion of photocatalytic hydrogen evolution over CdS nanocrystal, Journal of Materials Chemistry A, 3 (2015) 12631-12635.

[7] Z.F. Jiang, K. Qian, C.Z. Zhu, H.L. Sun, W.M. Wan, J.M. Xie, H.M. Li, P.K. Wong, S.Q. Yuan, Carbon nitride coupled with CdS-TiO₂ nanodots as 2D/0D ternary composite with enhanced photocatalytic H_2 evolution: A novel efficient three-level electron transfer process, Applied Catalysis B Environmental, 210 (2017) 194-204.

[8] Z. Yan, Z. Sun, X. Liu, H. Jia, P. Du, Cadmium sulfide/graphitic carbon nitride heterostructure nanowire loading with a nickel hydroxide cocatalyst for highly efficient photocatalytic hydrogen production in water under visible light, Nanoscale, 8 (2016) 4748-4756.

[9] S. Hong, D.P. Kumar, D.A. Reddy, J. Choi, T.K. Kim, Excellent photocatalytic hydrogen production over CdS nanorods via using noble metal-free copper molybdenum sulfide (Cu_2MoS_4) nanosheets as co-catalysts, Applied Surface Science, 396 (2016) 421-429.

[10] S.S. Yi, J.M. Yan, B.R. Wulan, Q. Jiang, Efficient visible-light-driven hydrogen generation from water splitting catalyzed by highly stable CdS@Mo₂C-C core-shell nanorods, Journal of Materials Chemistry A, 5 (2017) 15862-15868.