Electronic Supplementary Material (ESI) for Catalysis Science & Technology

Supplementary Information for

Synthesis and catalytic application of alumina@SAPO-11 composite *via* the *in situ* assembly of silicoaluminophosphate nanoclusters at an alumina substrate

Ping Zhang,^a Haiyan Liu,^a Haibo Zhu,^{*b} S. Ted Oyama,^{b, c} and Xiaojun Bao^{*a}

^{*a*} State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, P. R. China. E-mail: <u>baoxi@cup.edu.cn</u>

^b National Engineering Research Center of Fertilizer Catalyst, College of Chemical Engineering, Fuzhou University, Fuzhou 350116, P. R. China. E-mail: <u>haibo.zhu@fzu.edu.cn</u>

^c Department of Chemical Systems Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan

Table of contents

- 1. Supplementary Figures and Tables
- 2. References

1. Supplementary Figures and Tables

Fig. S1 Photographs of the products synthesized following the procedure of alumina@SAPO-11 without adding CTAB.

Fig. S2 XRD patterns of the alumina substrate modified without H_3PO_4 (a) and the product synthesized from alumina without H_3PO_4 modification (b).

Fig. S3 The relationship between the SAPO-11 content and the relative crystallinity. This curve was obtained by plotting the relative crystallinity of SAPO-11 versus the mass fraction of SAPO-11 in a series of mechanical mixtures of pure SAPO-11 and H₃PO₄ modified alumina.

Fig. S4 SEM images of the top-view of the alumina substrate (a), the H₃PO₄ modified alumina substrate (b), and the alumina@SAPO-11 composite (c-h). *Note: In order to check the homogeneity of the alumina@SAPO-11 composite, several particles were randomly selected for taking the SEM images one by one as shown in c-h.*

Fig. S5 Line scan analysis for SEM image of the alumina@SAPO-11 composite: A1 (red), Si (orange) and P (yellow).

Course 1	Al content ^a	P content ^a	Al/P ^b
Sample	%	%	mol/mol
Alumina	52.7	-	∞
H ₃ PO ₄ modified alumina	48.1	3.8	16.6

Table S1. Chemical compositions of alumina substrate before/after H₃PO₄ modification.

Notes: ^a Determined by ICP-OES; ^b Determined by XRF.

Sample	$S_{\rm BET}^{ m a}$ $({ m m}^2/{ m g})$	$S_{ m micro}{}^{ m b}$ (cm ² /g)	$S_{\rm ext}$ (m ² /g)	$V_{ m micro}^{ m b}$ (cm ³ /g)	$V_{\rm meso}^{\rm c}$ (cm ³ /g)
SAPO-11 _{reference}	154	112	42	0.05	0.10
alumina@SAPO-11	166	41	125	0.02	0.23
alumina-SAPO-11	120	41	79	0.02	0.22

Table S2. Textural properties of SAPO-11_{reference}, alumina@SAPO-11 and alumina-SAPO-11.

Notes: ^a BET method; ^b *t*-plot method; ^c BJH method (adsorption branch).

	Pt/alumina@SAPO-11	Pt/alumina-SAPO-11
Conversion (%)	66.9	45.9
Product composition w _i ^b		
2-MC ₇	35.4	41.6
3-MC ₇	38.8	37.6
4-MC ₇	10.2	8.5
2,5-DMC ₆	5.0	3.4
2,4-DMC ₆	4.1	2.4
2,3-DMC ₆	2.4	1.2
2,2-DMC ₆	0.9	0.1
<i>i</i> -C ₅	1.8	2.6
<i>n</i> -C ₅	1.1	1.9
2-MC ₅	0.1	0.0
3-MC ₅	0.0	0.0
n-C ₆	0.0	0.1
2-MC ₆	0.1	0.2
3-MC ₆	0.1	0.2
<i>n</i> -C ₇	0.0	0.2
Total	100.0	100.0

 Table S3. Product distributions of *n*-octane over Pt/alumina@SAPO-11 and Pt/alumina-SAPO-11.^a

Notes: ^a Reaction conditions: Tests were conducted in a continuous flow tubular fixed-bed micro-reactor, $W_{cat} = 5$ g, 1.5 MPa, 360 °C, H₂/*n*-octane volumetric ratio 300, weight hourly space velocity 1.5 h⁻¹; ^b w_i is the mass fraction of component *i* in the liquid product.

	Pt/alumina@SAPO-11	Pt/alumina-SAPO-11
Selectivity (%)		
$\mathbf{S}_{\mathbf{MB}}{}^{\mathbf{b}}$	85.5	85.7
$\mathbf{S}_{DB}{}^{b}$	8.2	6.1
$S_C{}^b$	6.3	8.2
S_{DB}/S_{C}	1.3	0.7
MON ^c	34.7	33.3
RON ^c	28.9	27.9

Table S4. Results of *n*-octane hydroisomerization over Pt/alumina@SAPO-11 and Pt/alumina-SAPO-11 at the same level of conversion of 41%.^a

Notes: ^a Reaction conditions: Tests were conducted in a continuous flow tubular fixed-bed micro-reactor, $W_{cat} = 5$ g, 1.5 MPa, 360 °C, H₂/*n*-octane volumetric ratio 300, weight hourly space velocity 4.0 and 2.0 h⁻¹, respectively; ^b S_{MB}, S_{DB} and S_C correspond to the total selectivity to mono-branched C₈ isomers, total selectivity to di-branched C₈ isomers, and total selectivity to cracking products, respectively, at 41% conversion of *n*-octane; ^c MON (motor octane number) and RON (research octane number) are calculated according to the following formula: octane number = $\sum (a_i w_i)$, in which a_i is the octane number of component *i* and w_i is the mass fraction of component *i*;¹ and the RON and MON data for each component in the liquid product are adapted from *Technical Data Book-Petroleum Refining* by API (American Petroleum Institute).

Table S5	• Product	distributions	of	<i>n</i> -octane	over	Pt/alumina@SAPO-11	and	Pt/alumina-
SAPO-11	.a							

	Pt/alumina@SAPO-11	Pt/alumina-SAPO-11
Conversion (%)	41.3	41.6
Product composition w_i^{b}		
2-MC7	38.1	41.7
3-MC ₇	39.6	39.1
4-MC7	11.1	8.0
2,5-DMC ₆	2.8	3.0
2,4-DMC ₆	2.9	1.8
2,3-DMC ₆	1.8	1.1
2,2-DMC ₆	1.1	0.1
<i>i</i> -C ₅	1.4	1.6
$n-C_5$	0.9	2.1
2-MC ₅	0.1	0.1
3-MC ₅	0.1	0.0
<i>n</i> -C ₆	0.0	0.1
$2-MC_6$	0.0	0.9
3-MC ₆	0.1	0.2
<i>n</i> -C ₇	0.0	0.2
Total	100.0	100.0

Notes: ^a Reaction conditions: Tests were conducted in a continuous flow tubular fixed-bed micro-reactor, $W_{cat} = 5$ g, 1.5 MPa, 360 °C, H₂/*n*-octane volumetric ratio 300, weight hourly space velocity 4.0 and 2.0 h⁻¹, respectively; ^b w_i is the mass fraction of component *i* in the liquid product.

Table S6. Acidity properties of Pt/alumina@SAPO-11 and Pt/alumina-SAPO-11 determined byPy-IR.

Sample	Amount (µmol/g) and distribution of acid sites						
	Total acid sites (200 °C)			Medium and strong acid sites (350 °C)			
	В	L	B + L	В	L	B + L	
Pt/alumina@SAPO-11	18.3	66.0	84.3	10.2	23.2	33.4	
Pt/alumina-SAPO-11	11.0	70.4	81.4	5.7	29.3	35.0	

2. References

1 R. Sun, S. Shen, D. Zhang, Y. Ren and J. Fan, *Energy Fuels*, 2015, **29**, 7005-7013.