Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2018

Electronic Supplementary Information

Catalytic function of VO_x/Al₂O₃ for oxidative

dehydrogenation of propane: support microstructure -

dependent mass-transfer and diffusion

Qun-Xing Luo,^a Xiao-Kang Zhang,^a Bo-Li Hou,^a Jian-Gang Chen,^a Chao Zhu,^a Zhong-Wen Liu,^a Zhao-Tie

Liu^{ab*} and Jian Lu^{b*}

^a Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), School of Chemistry and

Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China

E-mail: ztliu@snnu.edu.cn; Tel: +86-29-81530802

^b College of Chemistry and Chemical Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, China

^c State Key Laboratory of Fluorine and Nitrogen Chemicals, Xi'an Modern Chemical Research Institute, Xi'an,

710065, China

E-mail: lujian204@263.net; Tel: +86-29-88291213

1 Experimental section

1.1 Catalytic assessment

Catalytic assessments of VO_x/Al_2O_3 catalysts in oxidative dehydrogenation of propane were performed using a lab-scale continue-flow fixed-bed reactor (stainless steel tubular of 8 mm i.d. and 300 mm length) at atmospheric pressure. The process flowchart is shown in Scheme. S1.

Scheme S1. Process flowchart toward oxidative dehydrogenation of propane reaction using continue-flow fixedbed reactor

1.2 Definition

The relationship of carbon balance is shown in equation (S1), where F_{in} represents the flow-rate of feedstock, and pre-coefficient gives expression to carbon number of specific compounds, and C is the molar fraction, and F_{out} represents the flow-rate of effluents and is calculated by equation (S1). $F_{in} \times 3C_{in-c_3H_8} = F_{out} \times (3C_{out-c_3H_8} + C_{c0} + C_{c0_2} + C_{cH_4} + 2C_{c_2H_4} + 2C_{c_2H_6} + 3C_{c_3H_6})$ (S1)

The propane conversion and propylene selectivity were calculated by equation (S2) and (S3), respectively.

$$C_{3}H_{8}(Conversion)\% = \frac{F_{in-C_{3}H_{8}} - F_{out-C_{3}H_{8}}}{F_{in-C_{3}H_{8}}} \times 100\%$$
(S2)

$$C_{3}H_{6}(Selectivity)\% = \frac{F_{out} \times 3C_{C_{3}H_{6}}}{(F_{in-C_{3}H_{8}} - F_{out-C_{3}H_{8}}) \times 3} \times 100\%$$
(S3)

Surface density (*SD*) of catalysts is defined as the total number of V atoms per unit square nanometer. The specific calculation is based on equation (S4), where x is vanadium loading (5 wt.%), and M_v is standard atomic weight of vanadium (50.9), and N_A is Avogadro constant (6.02×10²³), and S_{BET} refers to the surface area of catalyst.

$$SD = \frac{x/M_V \times N_A}{S_{BET}}$$
(S4)

Weight hourly space velocity (*WHSV*, $g \cdot g^{-1} \cdot h^{-1}$) is defined as the quotient of the mass flow-rate of the propane divided by the mass of the catalyst (w_{cat}) in the reactor at the condition of standard temperature and pressure (STP), as illustrated in equation (S5), where V_m is standard molar volume (22.4 mol/L).

$$WHSV = \frac{(F_{in-C_{3}H_{8}}/V_{m}) \times M_{C_{3}H_{8}}}{w_{cat}}$$
(S5)

The surface specific activity is expressed with turnover frequency (TOF×10²³), referring to mole of propane consumed per unit V-atom and per hour (mol_{C3H8}·V⁻¹·h⁻¹). The corresponding value is calculated by the equation S6, where *SD* is surface density.

$$TOF_{C_{3}H_{8} consuming} = \frac{(F_{in-C_{3}H_{8}}/V_{m}) \times C_{3}H_{8}(conversion)}{SD \times S_{BET} \times w_{cat}}$$
(S6)

Reaction rates (h⁻¹) are described as propane consuming and propylene formation rate, which refers to the total number of propane molecules consumed and total number of propylene molecules formed per unit V-atom and per hour, respectively. The specific calculation is based on equation S7 and S8, where N_A is Avogadro constant.

$$Rate_{C_{3}H_{8} consuming} = \frac{(F_{in-C_{3}H_{8}}/V_{m}) \times C_{3}H_{8}(conversion) \times N_{A}}{SD \times S_{BET} \times w_{cat}} = TOF_{C_{3}H_{8} consuming} \times N_{A}$$
(S7)
$$Rate_{C_{3}H_{6} formation} = \frac{(F_{in-C_{3}H_{8}}/V_{m}) \times C_{3}H_{6}(Yield) \times N_{A}}{SD \times S_{BET} \times w_{cat}}$$
(S8)

Space-time yield (*STY*, $g \cdot g^{-1} \cdot h^{-1}$) of propylene is defined to the weight of propylene per unit weight catalyst and per hour, and is calculated by the equation (S9).

$$STY = \frac{(F_{in-C_3H_8}/V_m) \times M_{C_3H_8}}{w_{cat}} \times C_3H_6(Yield) = WHSV \times C_3H_6(Yield)$$
(S9)

2 Results

2.1 Effect of calcination temperature on Al₂O₃ supports

Fig. S1 Structural and textural characterization results of as-synthesized Al₂O₃ supports at calcination temperature of 550 °C, (a) XRD patterns and (b) N₂ adsorption-desorption isotherm curves

Supports	Calcination temperature	$S_{ m BET}$	$V_{\rm pore}$	D _{pore}
	(°C)	$(m^2 \cdot g^{-1})$	(cm ³ ·g ⁻¹)	(nm)
F-Al ₂ O ₃ -500	500	214	0.68	12.6
	550	175	0.64	14.6
S-Al ₂ O ₃ -500	500	150	0.36	9.6
	550	162	0.43	10.7
B-Al ₂ O ₃ -500	500	257	0.29	4.6
	550	242	0.30	5.0

Table S1 Textural properties of as-synthesized Al₂O₃ supports at different calcination temperature

To give a reliable explanation why the textural properties of catalysts are different from those of supports, we prepared all Al_2O_3 supports at calcination temperature of 550 °C. The resulting asprepared Al_2O_3 supports were characterized by XRD and N₂ physical adsorption-desorption, as shown in Fig. S1. The corresponding surface area, pore size and volume were listed in Table S1. Compared with those Al_2O_3 supports prepared at 500 °C, it is found that increasing calcination temperature almost have no effect on crystalline structure of Al_2O_3 support, but has a slight effect on textural properties.

2.2 Product distribution and carbon balance

Fig. S2 Product distribution of ODHP reaction over 5V-M-Al₂O₃ catalysts, reaction condition: m_{cat} =0.1 g, WHSV=9.43 g·g_{cat}·h⁻¹, T=530 °C

2.3 Catalyst stability

Fig. S3 Catalyst stability of 5V-M-Al₂O₃ catalysts for ODHP reaction, reaction condition: $m_{cat}=0.1$ g, WHSV=9.43 g·g_{cat}·h⁻¹, T=530 °C