Supporting Information

Janus CoN/Co Cocatalyst in Porous N-doped Carbon: toward Enhance Catalytic Activity of Hydrogen Evolution

Meihong Fan,^a Yuenan Zheng,^a Ang Li,^a Kaiqian Li,^a Hanyu Liu,^b Zhen-An Qiao*^a

^a State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China E-mail: qiaozhenan@jlu.edu.cn
 ^b Geophysical Laboratory, Carnegie Institution of Washington, Washington, DC 20015, USA

Supplementary Figures

Figure S1 TEM images for Co containing polymer calcinated at 700 °C (A), 800 °C (B), 900 °C (C). Comparative XRD patterns (D), N_2 adsorption-desorption isotherms and LSV curves (F) for Co containing polymer calcinated at 700 °C 800 °C and 900 °C.

Figure S2 TEM images for Co/CoN-NC with coexsitance of two phases.

Figure S3 Thermogravimetric curve for Co/CoN-NC and Co-NC.

 Table S1. Chemical composition of the two catalysts.

Catalysts	С	Со	Ν
Co-NC (wt%)	74.37	10.06	1.25
Co/CoN-NC (wt%)	76.31	13.14	4.70

Figure S4 C 1s XPS spectrum for Co-NC and Co/CoN-NC.

Table S2.	Comparison	of the electrocatalyt	ic activity of transitic	on metal nitride catalysts for HER
-----------	------------	-----------------------	--------------------------	------------------------------------

Catalysts	Electrolyte	Overpotential at 10 mA/cm ² (mV)	Stablility	Reference
Co/CoN-NC	0.5 M H ₂ SO ₄	150	100 hours@ j = 10 mA/cm ²	This work
Co/CoN-NC	1 M KOH	190	100 hours@ j = 10 mA/cm ²	This work
Co _{0.6} Mo _{1.4} N ₂	0.1 M HClO ₄	200	3000 cycles between +0.2 to -0.3 V <i>vs.</i> RHE	J. Am. Chem. Soc. 2013 , 135, 19186.
δ-ΜοΝ	0.1 M HClO ₄	390		J. Am. Chem. Soc. 2013 , 135, 19186.
MoN/C	0.1 M HClO ₄	157	2000 cycles between 0.3 + 0.9 V <i>vs</i> . RHE	Angew. Chem. Int. Ed. 2012 , 51, 6131.

Ni	0.1 M HClO ₄	78	2000 cycles between 0.3 + 0.9 V <i>vs.</i> RHE	Angew. Chem. Int. Ed. 2012 , 51, 6131.
W ₂ N on W	0.5 M H ₂ SO ₄	480	8 h	Int. J. Hydrogen Energy. 2009 , 34, 9050.
Mo ₂ N/C	0.1 M HClO ₄	300	3000 cycles between -0.3 to +0.63 V <i>vs</i> .	<i>Energy Environ.</i> <i>Sci.</i> , 2013 , <i>6</i> , 1818.
P-WN/rGO	0.5 M H ₂ SO ₄	85	20 h @ $\eta = 120$ mV.	Angew.Chem. Int. Ed. 2015 , 54, 6325.
WN/rGO	0.5 M H ₂ SO ₄	265	20 h @ η = 120 mV.	Angew. Chem. Int. Ed. 2015 , 54, 6325.
MoN nanosh eets	0.5 M H ₂ SO ₄	225	3000 CV cycles between -0.3 to 0.2 V <i>vs</i> . RHE	<i>Chem. Sci.,</i> 2014 , <i>5</i> , 4615.
WN nanoarray on carbon cloth	0.5 M H ₂ SO ₄	198	60 h @ 227 mV	<i>Electrochim.</i> <i>Acta</i> , 2015 , <i>154</i> , 345.
PANICo750 A	0.5 M H ₂ SO ₄	138	40 h	J. Am. Chem. Soc. 2015 , 137, 15070.