Supporting information

A New insight into the Reaction Behaviors of Side-chain Alkylation

of Toluene with Methanol over CsX

PeidongLi^{a,b,c}, QiaoHan^{a,b,c}, XiaominZhang^a, YangyangYuan^a, YanfeiZhang^{a,b,c}, HongchenGuo^c, Li Xu^{*a} and Lei Xu^{*a}

^a National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People's Republic of China

^b University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China

^c Department of Catalytic Chemistry and Engineering & State Key Laboratory of Fine Chemicals,

Dalian University of Technology, Dalian 116012, People's Republic of China.

*E-mail addresses: xulei808@dicp.ac.cn, xuli@dicp.ac.cn.

Fig. S1 N_2 adsorption-desorption isotherms at 77K and pore size distributions of the indicated catalysts

Fig. S2 XRD spectra of SiO_2 and H_3PO_4/SiO_2 .

Fig. S3 Catalysts loading position of H₃PO₄/SiO₂ and CsX, position A for H₃PO₄/SiO₂ and positon B for CsX.

Fig. S4 GC-MS analysis of hydrocarbon species trapped in zeolite pores after conversion of styrene with methanol at 430 °C for NaX, the reaction time is 50min.

Table S1 The details of cesium ion exchange process for different CsX.

Table S2. Reaction results for depolymerization of triformol on H₃PO₄/SiO₂.

Table S3 Details for reaction results of alkylation of toluene with methanol on indicated catalysts.

Catalysts	liquid/solid	Temperature	ion avalance process*	
	ratio (mL/g)	(°C)	ion exchange process.	
CsX-1	8:1	80	Exchanged with 0.2 mol/L CsCl for 4h.	
CsX-2	8:1	80	Exchanged with 0.2 mol/L CsCl for 4h, repeated one times.	
CsX-3	8:1	80	Exchanged with 0.2 mol/L CsCl for 4h, repeated two more times.	
CsX-4	8:1	80	Exchanged with 0.2 mol/L CsCl for 4h , repeated two more times, and then	
			exchanged with 0.1mol/L CsCl for 1 h.	
CsX-5	8:1	80	Exchanged with 0.2 mol/L CsCl for 4h , repeated two more times, and then	
			exchanged with 0.4mol/L CsCl for 4 h.	
CsX-6	8:1	80	Exchanged with 0.5 mol/L CsCl for 4h, repeated three more times.	

Table S1 The details of cesium ion exchange process for different CsX.

* After each ion exchange process, the slurry was filtered and washed by a large amount of deionized water for

several times.

Fig. S1 N₂ adsorption-desorption isotherms at 77K (a)and pore size distributions of the indicated catalysts (b), the pore size distributions were calculated by SF method.

Depolymerization of triformol to formaldehyde

The catalyst for depolymerization of triformol was prepared by incipient-wetness impregnation of Mesoporous SiO_2 (Qingdao Ocean Chemical CO., Ltd., China.) with H_3PO_4 (Tianjin Kermel Chemical Reagent Co. Ltd., 85 %) at room temperature, after stewed overnight, dried at 110 °C for 4h and then calcined in air at 450 °C for 4h. The amount of H_3PO_4 loadings was 60 wt %, and the catalyst was named as H_3PO_4/SiO_2 .

Fig. S2 XRD spectra of SiO₂ and H₃PO₄/SiO₂.

XRD patterns of SiO₂ and H_3PO_4/SiO_2 are in Fig. 2. Only a broad peak around 22° can be detected on the XRD spectrum of SiO₂, which can be attributed to

amorphous SiO₂. After loading of H₃PO₄, a series of new peaks appeared with the position matching well with Si₃(PO₄)₄ (PDF NO. 22-1380) in the inset figure. Actually, the peak position of Si₃(PO₄)₄ and Si(HPO₄)₂•H₂O (PDF NO. 18-1168) is very similar with each other. The existence of Si(HPO4)₂•H₂O species can not be omitted.¹ Thus, it is reasonable to suggest that both Si(HPO₄)₂•H₂O and Si₃(PO₄)₄ were formed on H₃PO₄/SiO₂.

Reference

1Y. Maki, K. Sato, A. Isobe, N. Iwasa, S. Fujita, M. Shimokawabe and N. Takezawa, Appl. Catal. A: Gen., 1998,170, 269-275.

Fig. S3 Catalysts loading position of H₃PO₄/SiO₂ and CsX, position A for H₃PO₄/SiO₂ and positon B for CsX.

Formaldehyde employed in this work was produced by depolymerization of triformol using a H_3PO_4/SiO_2 catalyst. The packing structure of H_3PO_4/SiO_2 (A) and CsX (B) catalysts is shown in Fig. S3.

The H_3PO_4/SiO_2 catalyst was activated in-situ at 335 °C under a flow of air (40 mL/min) for 90 min and then cooled to the reaction temperature of 295 °C. Before the

side-chain alkylation of toluene with formaldehyde, a liquid mixture of toluene and triformol with molar ratio of 18:1 was pumped into A at a weight hourly space velocity (WHSV) of 2 h⁻¹ with helium at a flow rate of 10 mL/min (run number 1).Before the styrene conversion with formaldehyde, the feedstock is benzene, styrene and triformol with a molar ratio of 16:1:1 (run number 2). The reaction results were shown in Table S2.

		1	2	512					
Pun	Conversion of triformol (mol%)	Yield of formaldehyde (mol%)	$Y_{ST^{+}\!EB}{}^{a}$	X _(StoEB) ^b	molar ratio of main compounds in outlet				
numbor					toluene:	benzene: styrene:			
number					formaldehyde	formaldehyde			
1	99.31	96.29	0.0013	-	6.1:1	-			
2	99.48	96.71	-	0.034	-	15.7: 1: 2.9			
			17	styre	ene and ethylbenzene _{outlet} 1000/				
$Y_{ST + EB} = \frac{3 \times triformol_{inlet}}{3 \times triformol_{inlet}} \times 100$									
	-		2	V	$ethylbenzene_{ov}$	utlet x 1000/			
$x_{(ST to EB)} = \frac{100\%}{styrene_{inlet}} \times 100\%$									

Table S2 Reaction results for depolymerization of triformol on H₃PO₄/SiO₂.

As shown in Table S2, the conversion of triformol reaches 99%, and yield of formaldehyde is higher than 96% for both run number 1 and 2 experiments. Y_{ST+EB} in run number 1 and $X_{(ST-to-EB)}$ in run number 2 is close to zero. The molar ratio of toluene to formaldehyde in outlet of run number 1 is 6.1:1, which is close to that of toluene to methanol used in Table 3. And the molar ratio of benzene, styrene and formaldehyde in outlet of run number 2 is 15.7: 1: 2.9, which is close to the molar ratio inlet of benzene, syrene and methanol in conversion of styrene with methanol used in Fig.10. Thus, it is reasonable to employ this experiment system to investigate the reaction behavious of toluene and formaldehyde and conversion of styrene with formaldehyde.

		C	catalysts	5. *					
Molar flow rates of different components (mmol/h)									
G		Output over different catalysts							
Components	Reactor feed	NaX	CsX-1	CsX-2	CsX-3	CsX-4	CsX-5	CsX-6	
Carbon monoxide	-	1.079	0.266	0.618	2.560	4.520	7.221	10.335	
Carbon dioxide	-	0.172	0.045	0.021	0.068	0.082	0.139	0.263	
Methane	-	0.618	0.633	0.030	0.028	0.029	0.042	0.071	
C2-C5	-	0.312	0.156	0.002	0.004	0.006	0.008	0.012	
DME	-	3.298	3.687	2.145	1.813	1.420	0.964	0.984	
methanol	25.643	15.443	15.979	20.326	18.500	17.097	14.913	10.672	
benzene	-	0.013	0.004	0.001	0.002	0.008	0.005	0.006	
Toluene	12.821	11.524	11.511	12.485	12.268	11.925	11.360	10.792	
Ethylbenzene	-	0.015	0.010	0.034	0.166	0.408	0.810	1.487	
Xylene	-	0.884	0.952	0.187	0.070	0.013	0.009	0.007	
Styrene	-	0.007	0.011	0.087	0.314	0.446	0.573	0.488	
C_9^+	-	0.279	0.245	0.027	0.041	0.046	0.057	0.077	
Total	38.464	33.643	33.498	35.964	35.833	36.001	36.102	35.195	
[HCHO]	-	1.273	0.332	0.759	3.109	5.457	8.744	12.574	
Xtoluene (mol%)		10.119	10.220	2.622	4.312	6.992	11.392	15.829	
X _{methanol} (mol%)		14.056	8.931	4.002	13.716	22.253	34.326	50.704	
Y _{ST+EB} (mol%)		0.172	0.163	0.939	3.748	6.667	10.787	15.406	
Y _{CO+CO2} (n	4.878	1.212	2.492	10.249	17.948	28.705	41.331		
ST/EB (mo	0.482	1.176	2.591	1.887	1.094	0.707	0.329		
S _{Side-chain} (n	2.436	2.155	39.144	87.321	98.450	99.322	99.642		
Y _{xylene} (me	6.895	7.422	1.460	0.544	0.105	0.074	0.055		
X(HCHO to ST+EE	1.734	6.315	15.856	15.457	15.663	15.817	15.709		
Y _{[HCH0}	4.964	1.294	2.961	12.123	21.281	34.098	49.034		
X' _{(ST to I}	EB)	67.474	45.966	27.847	34.644	47.765	58.589	75.269	

Table S3 Details for reaction results of alkylation of toluene with methanol on indicated

*Reaction conditions: T=430°C; WHSV=2h⁻¹; n(toluene)/n(methanol)=1:2.

Fig. S4. GC-MS analysis of hydrocarbon species trapped in zeolite pores after conversion of styrene with methanol at 430 °C for NaX (a) and CsX-6 (b), the reaction time was 50min.

The hydrocarbon species trapped in the pores of NaX and CsX-6 after reaction between styrene and methanol was analyzed by an Agilent 7890A/7000B GC/MSD. The results are shown in Fig. S4. The retained hydrocarbon species were obtained by dissolving the catalyst in 15% HF in a screw-cap Teflon vial, and then extracted by CH_2Cl_2 .