Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2018

Electronic Supplementary Information (ESI)

Efficient solar light driven H₂ production: A post-synthetic encapsulation of Cu₂O co-

catalyst on metal-organic framework (MOF) for boosting the effective charge-carrier

separation

Peramaiah Karthik,^a Ekambaram Balaraman,^{b*} and Bernaurdshaw Neppolian^{a*}

^aSRM Research Institute and Department of Chemistry, SRM University, Kattankulathur,

Chennai- 603203, Tamil Nadu, India.

^bOrganic Chemistry Division, CSIR-National Chemical Laboratory (CSIR-NCL), Dr. Homi Bhabha Road, Pune-411008, India.

*E-mail: *neppolain.b@res.srm.univ.ac.in*, *eb.raman@ncl.res.in*

Content

1. Figure S1.TEM-EDX of Cu_2O/NH_2 -MIL-125(Ti) MOF.

 Figure S2.X-ray diffraction patterns of NH₂-MIL-125(Ti) and Cu₂O/ NH₂-MIL-125(Ti) MOFs.

3. Figure S3. X-ray diffraction patterns of Cu_2O .

 Figure S4. N₂ adsorption and desorption isotherms of NH₂-MIL-125(TI) and Cu₂O/ NH₂-MIL-125(Ti) MOF.

5. Figure S5.FT-IR spectra of NH₂-MIL-125(TI) and Cu₂O/ NH₂-MIL-125(Ti) MOFs.

6. Figure S6. Survey scan and Cu2p spectra of Cu_2O/NH_2 -MIL-125(Ti) MOFs.

7. Figure S7.Photographs of pristine NH₂-MIL-125(Ti) MOF and (b) Cu₂O/NH₂-MIL-125(Ti) MOF.

8. Figure S8.FT-IR spectra of after the photocatatlytic H₂ production.

9. Figure S9.TEM image after the photocatatlytic H₂ production.

10. Figure S10.TEM-EDX of Cu₂O/ NH₂-MIL-125(Ti) MOF after the photocatalytic reaction.

Figure S11.Photocatalytic H₂ production using physical mixture of Cu₂O and NH₂-MIL 125 (Ti) MOF.

12. Figure S12.Raman analysis of NH₂-MIL-125(TI) and Cu₂O/ NH₂-MIL-125(Ti) MOFs.

13. Table S1.Elemental composition of Cu₂O/ NH2-MIL-125(Ti) MOF.

2

14. Table S2. The BET surface area and pore volume data of pristine NH_2 -MIL-125(TI) and Cu_2O/NH_2 -MIL-125(Ti) MOF.

15. Table S3. Photocatalytic H₂ production comparison with existing MOF based catalysts.

16. Table S4.Elemental composition of Cu_2O/NH_2 -MIL-125(Ti) MOF after the photocatalytic H_2 production.

17. Apparent Quantum Yield (AQY).

Figure S1.TEM-EDX of Cu₂O/ NH₂-MIL-125(Ti) MOF.

The EDX analysis shows the presence of all the elements such as C, N, O, Ti and Cu in the synthesized Metal-organic framework photocatalyst. The atomic and weight % of elements are tabulated in table S1.

Figure S2. X-ray diffraction patterns of NH₂-MIL-125(Ti) and Cu₂O/NH₂-MIL-125(Ti) MOFs.

Figure S3. X-ray diffraction patterns of Cu₂O.

Figure S4. N_2 adsorption and desorption isotherms of NH2-MIL-125(TI) and Cu₂O/ NH₂-MIL-125(Ti) MOF.

Figure S5. FT-IR spectra of NH₂-MIL-125(TI) and Cu₂O/NH₂-MIL-125(Ti) MOFs.

Figure S6. Survey scan and Cu2p spectra of Cu₂O/ NH₂-MIL-125(Ti) MOFs.

The chemical composition and valance states of Cu element were investigated by XPS spectra. The survey scan spectrum (Fig. S5a) clearly reveals the existence of Ti, Cu, O, N and C in the MOF composite. In addition, it is seen from the Cu2p core level spectrum of Cu, the two predominant binding energies such as 932.5 and 952.4 eV was observed related to Cu 2p3/2 and Cu 2p1/2, respectively and this obviously demonstrates the formation of Cu₂O.[1] However, the small peak appeared at 945.1 eV due to shake-up of outer electron in the Cu⁺ state.[2]

NH₂-MIL-125(Ti) MOF

Cu₂O/NH2-MIL-125(Ti) MOF

Figure S7. The photographs of pristine NH₂-MIL-125(Ti) MOF and (b) Cu₂O/NH2-MIL-125(Ti) MOF.

Figure S8. FT-IR spectra of after the photocatatlytic H₂ production.

Figure S9. TEM image after the photocatatlytic H₂ production.

Figure S10. TEM-EDX of Cu₂O/ NH₂-MIL-125(Ti) MOFafter the photocatalytic reaction.

The superior stability of Cu₂O/ NH₂-MIL-125(Ti) MOF was further confirmed by the TEM-EDX analysis. It is clearly seen from the Fig. S10 and table S4, there is no significant change in the elemental composition Cu₂O/ NH₂-MIL-125(Ti) MOF after the photocatalytic H₂ production.

Figure S11. Photocatalytic H₂production using physical mixture of Cu₂O and NH₂-MIL-125 (Ti) MOF.

Figure S12. Raman analysis of NH₂-MIL-125(TI) and Cu₂O/ NH₂-MIL-125(Ti) MOFs.

Element	Weight %	Atomic %	Uncert. %	Correction	k-Factor
					3.94
C(K)	37.98	71.18	0.29	0.26	
					3.826
N(K)	1.25	2.02	0.07	0.26	
					3.826
N(K)	1.25	2.02	0.07	0.26	
					1.229
Ti(K)	4.3	2.02	0.05	0.98	
					1.667
Cu(K)	51.92	18.39	0.21	0.99	

Table S1. Elemental composition of Cu₂O/ NH₂-MIL-125(Ti) MOF.

Table S2. The BET surface area and pore volume data of pristine NH2-MIL-125(TI) and Cu₂O/ NH_2 -MIL-125(Ti) MOF.

Entry	BET surface area (m ² /g)	pore volume (nm)
NH ₂ -MIL-125(Ti)	710	0.649
Cu ₂ O/NH ₂ -MIL-125(Ti) MOF	689	0.421

MOF catalyst	Со-	Reaction conditions	H ₂ evaluation rate	Quantum	Ref.
	catalyst			efficiency	
MOF-253-Pt	Pt	Light source : 300W Xe	3000 µmol	1.63% at	[3]
		Lamp -Visible		440 nm	
		Sacrificial agent : TEOA			
H ₂ TCPP[AlOH] ₂ (DM	Colloidal	Light source : 300W Xe	200 µmol g ⁻¹ h ⁻¹	0.1 %	[4]
$F_3-(H_2O)_2)$	Pt	Lamp -Visible			
		Sacrificial agent : EDTA			
${[Ln_2Cu_5(OH)_2(pydc)_6]}$	-	Light source : 500W Hg	2105 μmol g ⁻¹ h ⁻¹		[5]
$(H_2O)_8]$ ·I8} (Ln: Tb)		Lamp –UV			
		Sacrificial agent : aq.			
		CH ₃ OH			
RhB/UiO-66(Zr)-100*	Rh-B and	Light source : 300W Xe	116.0 µmol g ⁻¹ h ⁻¹		[6]
	Pt	Lamp –Visible			
		Sacrificial agent : TEOA			
Pt-UiO-66-30	Pt	Light source : 300W Xe	4.6 μmol	~0.25% at	[7]
		Lamp -Visible		420 nm	
		Sacrificial agent : CH ₃ OH			
Pt/Ti-MOF-Ru(tpy) ₂	Pt	Light source : 500W Xe	5.1 µmol		[8]
		Lamp -Visible			
		Sacrificial agent : TEOA			
Pt	Pt	Light source : 125W Hg	44.35 μmol g ⁻¹ h ⁻¹		[9]
$/[Cu(en)_2]_4[PNb_{12}O_40($		Sacrificial agent :			
$VO)_6]$ · $(OH)_5$ ·8H ₂ O		aq.CH ₃ OH			
Pt@CdS/MIL-101(Cr)	Pt	Light source : 300W Xe	150 μmol g ⁻¹ h ⁻¹		[10]
		Sacrificial agent : lactic acid			
Co@NH ₂ -MIL-	Со	Light source : 500W Xe/Hg	37 μmol	0. 5 % at	[11]
125(Ti)		Sacrificial agent : TEOA		400 nm	
Pt/NH2-MIL-125(Ti)	Pt	Light source : Xe lamp	33 µmol		[12]
		Sacrificial agent : TEOA			
Pt/MIL-125(Ti)	Pt	Light source : Xe lamp	38.68 µmol		[13]

Table S3. Photocatalytic H₂ production comparison with existing MOF based catalysts.

		(l=320-780 nm)			
		Sacrificial agent : TEOA			
{[CuICuII	Pt	Light source : 200 W Xe	160 μmolh ⁻¹	2.3% at 420	[14]
2-		Sacrificial agent : CH ₃ OH		nm	
(DCTP) ₂]NO ₃ ·1.5DM					
F}n					
[CoII(TPA)Cl][Cl]-	Со	Light source : 200 W Xe	553 μmol g ⁻¹ h ⁻¹		[15]
MIL-125-NH ₂		Sacrificial agent : CH3CN			
		and TEOA			
Pt@UiO-66-NH ₂	Pt	Light source : 200 W Xe	257.3 μmolg ⁻¹ h ⁻¹		[16]
		lamp Sacrificial agent :			
		CH3CN and TEOA			
Cu ₂ O/ NH ₂ -MIL-	Cu ₂ O	Light source : Solar light	11055.5 μmol h ⁻¹ g ⁻¹	1.4 % at	This
125(Ti) MOF		Sacrificial agent : 5		420 nm	work
		%TEOA			

Element	Weight %	Atomic %	Uncert. %	Correction	k-Factor
C(K)	35.37	48	0.34	0.26	3.94
N(K)	2.19	2.55	0.11	0.26	3.826
O(K)	43.79	44.61	0.29	0.49	1.974
Ti(K)	0.64	0.21	0.02	0.98	1.229
Cu(K)	17.98	4.61	0.16	0.99	1.667

Table S4. Elemental composition of Cu_2O/NH_2 -MIL-125(Ti) MOF after the photocatalytic reaction.

Apparent Quantum Yield (AQY).

The AQY of photocatalytic H_2 production activity was calculated by using 420 nm band pass filter. The irradiation area was calculated as 0.00144 m²

AQY Calculation details:

The energy of one photon (*E*photon) with wavelength of λ inc (nm) is calculated using the following equation.

hc

 $\begin{array}{lll} E_{photon} &=& & & \\ \lambda_{inc} & & & \\ & & & \\ Here, & & \\ & & h - Planck's \ constant \ (J\cdot s) & \\ & & c - Speed \ of \ light \ (m \ s^{-1}) & \\ & & \lambda_{inc} - \ wavelength \ of \ the \ incident \ monochromatic \ light \ (m) \end{array}$

Total energy of the incident light (*E* total) is can be calculated by following equation:

 $E_{total} = PSt$

Where,

P - Power density of the incident monochromatic light ($W \cdot m^{-2}$)

S - Irradiation area (m²)

t- Duration of the incident light exposure (s)

The number of incident photons can be obtained through the following equation

 E_{total} PS $\lambda_{inc}t$ Number of incident photons = ----- = -----

Ephotonhc

Quantum yield (Q.Y.) which is widely used to evaluate the performance of photocatalysts for water splitting, is defined by the following equation

Q.Y.(%) Number of reacted electrons Q.Y.(%) = ------ 100 Number of incident photons

Or 2 (Number of H₂ molecules evolved) A.Q.Y.(%) = ------ 100 Number of incident photons

References

- J. Chastain, R. C. King and J. Moulder, *Handbook of X-ray photoelectron spectroscopy:* a reference book of standard spectra for identification and interpretation of XPS data, Physical Electronics Division, Perkin-Elmer Corporation Eden Prairie, Minnesota, 1992.
- X. Y. Dong, M. Zhang, R. B. Pei, Q. Wang, D. H. Wei, S. Q. Zang, Y. T. Fan and T. C. Mak, *Angew. Chem.*, *Int. Ed*.2016, 55, 2073-2077.
- T. Zhou, Y. Du, A. Borgna, J. Hong, Y. Wang, J. Han, W. Zhang and R. Xu, *Energy Environ. Sci.*, 2013, 6, 3229-3234.
- 4. A. Fateeva, P. A. Chater, C. P. Ireland, A. A. Tahir, Y. Z. Khimyak, P. V. Wiper, J. R. Darwent and M. J. Rosseinsky, *Angew. Chem. Int. Ed*, 2012, **124**, 7558-7562.
- X.-L. Hu, C.-Y. Sun, C. Qin, X.-L. Wang, H.-N. Wang, E.-L. Zhou, W.-E. Li and Z.-M. Su, *Chem. Commun.*, 2013, 49, 3564-3566.

- J. He, J. Wang, Y. Chen, J. Zhang, D. Duan, Y. Wang and Z. Yan, *Chem. Commun.*, 2014, **50**, 7063-7066.
- Y.-P. Yuan, L.-S. Yin, S.-W. Cao, G.-S. Xu, C.-H. Li and C. Xue, *Appl. Catal. B. Environ.*, 2015, 168, 572-576.
- 8. T. Toyao, M. Saito, S. Dohshi, K. Mochizuki, M. Iwata, H. Higashimura, Y. Horiuchi and M. Matsuoka, *Chem. Commun.*,2014, **50**, 6779-6781.
- J.-Q. Shen, Y. Zhang, Z.-M. Zhang, Y.-G. Li, Y.-Q. Gao and E.-B. Wang, *Chem. Commun.*, 2014, **50**, 6017-6019.
- J. He, Z. Yan, J. Wang, J. Xie, L. Jiang, Y. Shi, F. Yuan, F. Yu and Y. Sun, *Chem. Commun.*, 2013, 49, 6761-6763.
- M. A. Nasalevich, R. Becker, E. V. Ramos-Fernandez, S. Castellanos, S. L. Veber, M. V. Fedin, F. Kapteijn, J. N. Reek, J. Van Der Vlugt and J. Gascon, *Energy Environ. Sci.*, 2015, 8, 364-375.
- Y. Horiuchi, T. Toyao, M. Saito, K. Mochizuki, M. Iwata, H. Higashimura, M. Anpo and M. Matsuoka, J. Phys. Chem. C, 2012, 116, 20848-20853.
- 13. L. Shen, M. Luo, L. Huang, P. Feng and L. Wu, *Inorg. Chem.*2015, 54, 1191-1193.
- Z. L. Wu, C. H. Wang, B. Zhao, J. Dong, F. Lu, W. H. Wang, W. C. Wang, G. J. Wu, J.
 Z. Cui and P. Cheng, *Angew. Chem. Int. Ed*, 2016, 55, 4938-4942.
- 15. Z. Li, J.-D. Xiao and H.-L. Jiang, ACS Catal., 2016, 6, 5359-5365.
- J. D. Xiao, Q. Shang, Y. Xiong, Q. Zhang, Y. Luo, S. H. Yu and H. L. Jiang, *Angew. Chem. Int. Ed*, 2016, 55, 9389-9393.