ESI for

Ni-based catalyst with enhanced Ni-support interaction for highly efficient CO methanation

Xiaoliang Yan,*^a Chen Yuan,^a Jiehua Bao,^a Sha Li,^a Daizong Qi,^b Qianqian Wang,^b Binran Zhao,^c Tong Hu,^a Liming Fan,^a Binbin Fan,^a Ruifeng Li,*^a Franklin (Feng) Tao,^d and Yun-Xiang Pan*^b

^a College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan, Shanxi 030024, P. R. China;

^b Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China;

^c School of Chemical Engineering, Northwest University, Xi'an, Shaanxi 710069, P. R. China;

^d Department of Chemical and Petroleum Engineering and Department of Chemistry, University of Kansas, Lawrence, Kansas 66047, USA

Corresponding Authors:

yanxiaoliang@tyut.edu.cn (X. Yan); rfli@tyut.edu.cn (R. Li); yxpan81@sjtu.edu.cn (Y. -X. Pan)

Fig. S1 (a) XRD pattern and (b) SEM image of MIL-53 (Al).

Fig. S2 TGA and corresponding mass spectrometer curves in air for (a) MIL-53 (Al) and (b) Ni²⁺-impregnated MIL-53 (Al).

Fig. S3 XRD patterns of the samples resulted from the calcination of MIL-53 (Al) at 600 and 900 °C.

Fig. S4 (a) XRD patterns and (b) UV–vis–DRS spectra of the samples formed during the calcinations of the Ni²⁺-impregnated MIL-53 (Al) from 200 to 900 °C with an interval of 100 °C (\blacksquare : octahedrally coordinated Ni²⁺ in NiO lattice, \blacktriangle : octahedrally coordinated Ni²⁺ in NiAl₂O₄ lattice, \bullet : tetrahedrally coordinated Ni²⁺ in NiAl₂O₄ lattice).

Fig. S5 High magnification TEM images of (a) NiO/Al₂O₃-M and (b) NiO/NiAl₂O₄-M.

Fig. S6 Particle size distribution of (a) Ni/Al₂O₃-M and (b) Ni/NiAl₂O₄-M.

Fig. S7 Effect of (a) external and (b) internal diffusions on the catalysts. The reaction was conducted at 400 $^{\circ}$ C and 240 Lg_{cat}⁻¹h⁻¹.

Fig. S8 Stability of Ni/Al₂O₃-C at 0.1 MPa, 400 $^\circ C$ and 15000 mL g^-1 h^-1.

1. Mass and Heat Transfer Calculations for the methanation on Ni/Al₂O₃-M.

For PBR reaction mode ($67H_2/33CO$).

1.1 Mears Criterion for External Diffusion (Fogler, p841; Mears, 1971).

If $\frac{-r_A' \rho_b Rn}{k_c C_{Ab}} < 0.15$, then external mass transfer effects can be neglected.

Where $-r_A' =$ reaction rate, kmol·kg_{cat}⁻¹·s⁻¹;

n = reaction order;

R = catalyst particle radius, m;

 ρ_b = bulk density of catalyst bed, kg·m⁻³;

= $(1-\phi)$ (ϕ = porosity or void fraction of packed bed);

 ρ_c = solid catalyst density, kg·m⁻³;

 C_{Ab} = bulk gas concentration of A, kmol·m⁻³;

 $k_c = mass transfer coefficient, m \cdot s^{-1}$.

$$\frac{-r_{A}'\rho_{b}Rn}{k_{c}C_{Ab}} = [1.45*10^{-4}\text{kmol}\cdot\text{kg}_{cat}^{-1}\cdot\text{s}^{-1}]*[367.5\text{kg}\cdot\text{m}^{-3}]*[3.0*10^{-4}\text{m}]*[1]/([0.64\text{m}\cdot\text{s}^{-1}]*[0.0147 \text{ kmol})]*[1]/([0.64\text{m}\cdot\text{s}^{-1}]*[0.0147 \text{ kmol})]*[1]/([0.64\text{m}\cdot\text{s}^{-1}]*[1]/([0.64\text{m}\cdot\text{s}^{-1}])*[1]/([0.64\text{m}\cdot\text{s}^{-1}]*[1]/([0.64\text{m}\cdot\text{s}^{-1}]))}*[1]/([0.64\text{m}\cdot\text{s}^{-1}]*[1]/([0.64\text{m}\cdot\text{s}^{-1}])*[1]/([0.64\text{m}\cdot\text{s}^{-1}])*[1]/([0.64\text{m}\cdot\text{s}^{-1}])*[1]/([0.64\text{m}\cdot\text{s}^{-1}])*[1]/([0.64\text{m}$$

 \cdot m⁻³]) = 1.7*10⁻³ < 0.15 {Mears for External Diffusion}

1.2 Weisz-Prater Criterion for Internal Diffusion (Fogler, p839).

If $C_{WP} = \frac{-r'_{A(obs)} \rho_c R^2}{D_e C_{As}} < 1$, then internal mass transfer effects can be neglected.

Where $-r'_{A(obs)} =$ observed reaction rate, kmol·kg_{cat}-1·s⁻¹;

R = catalyst particle radius, m;

 $\rho_c =$ solid catalyst density, kg·m⁻³;

 $D_e = effective gas-phase diffusivity, m^2 \cdot s^{-1} [Fogler, p815]$

$$=rac{D_{AB}\phi_{p}\sigma_{c}}{ au}$$

where D_{AB} = gas-phase diffusivity m²·s⁻¹; ϕ_p = pellet porosity;

 σ_c = constriction factor; τ = tortuosity.

 C_{As} = gas concentration of A at the catalyst surface, kmol·m⁻³.

$$C_{WP} = \frac{-r'_{A(obs)} \rho_c R^2}{D_e C_{As}} = [1.45*10^{-4} \text{kmol} \cdot \text{kg}_{cat}^{-1} \cdot \text{s}^{-1}]*[500 \text{kg} \cdot \text{m}^{-3}]*[3.0*10^{-4} \text{m}]^2 / ([2.65*10^{-4} \text{m}^2 \cdot \text{s}^{-1}]*[0.0*10^{-4} \text{m}^2 \cdot \text{s}^{-1}]*[0.0*10^{-4}$$

 $147 \text{kmol} \cdot \text{m}^{-3}$]) = $1.7 \times 10^{-3} < 1$

{Weisz-Prater Criterion for Internal Diffusion}

1.3 Mears Criterion for External (Interphase) Heat Transfer (Fogler, p842).

The bulk fluid temperature, T, will be virtually the same as the temperature at the external surface of

the pellet when
$$\left| \frac{-\Delta H_r(-r_A')\rho_b RE}{h_t T_b^2 R_g} \right| < 0.15$$
.

Where ΔH_r = heat of reaction, kJ·mol⁻¹;

 $E = activation energy, kJ \cdot mol^{-1};$

 h_t = heat transfer coefficient between gas and pallet, kJ·m⁻²·s⁻¹·K⁻¹;

 R_g =gas constant, kJ·mol⁻¹·K⁻¹.

$$\left|\frac{-\Delta H_r(-r_A')\rho_b RE}{h_r T_b^2 R_g}\right| = [242.073 \text{kJ} \cdot \text{mol}^{-1}] * [1.45 \times 10^{-4} \text{kmol} \cdot \text{kg}_{\text{cat}}^{-1} \cdot \text{s}^{-1}] * [367.5 \text{kg} \cdot \text{m}^{-3}] * [3.0 \times 10^{-4} \text{m}] * [80 \text{km}^{-1}] * [3.0 \times 10^{-4} \text{m}] * [80 \text{km}^{-1}] * [3.0 \times 10^{-4} \text{m}] * [3.$$

 $J \cdot mol^{-1} / ([5.3kJ \cdot m^{-2} \cdot K^{-1} \cdot s^{-1}] * [673K]^{2} * [8.314 * 10^{-3} kJ \cdot mol^{-1} \cdot K^{-1}]) = 1.6 * 10^{-5} < 0.15 \{ Mears Criterion for External (Interphase) Heat Transfer \}$

1.4 Mears Criterion for Combined Interphase and Intraparticle Heat and Mass Transport (M ears, 1971).

If
$$\frac{-r'_{A}R^{2}}{C_{Ab}D_{e}} < \frac{1+0.33\gamma\chi}{|n-\gamma_{b}\beta_{b}|(1+0.33n\omega)}$$
, which indicates that there are no interphase or intraparticle heat

transfer or mass transport limitations for thepresent case.

$$\gamma = \frac{E}{R_g T_s}; \ \gamma_b = \frac{E}{R_g T_b}; \ \beta_b = \frac{(-\Delta H_r) D_e C_{Ab}}{\lambda T_b}; \quad \chi = \frac{(-\Delta H_r) - r'_A R}{h_t T_b}; \quad \omega = \frac{-r'_A R}{k_c C_{Ab}}$$

 γ = Arrhenius number; β_b = heat generation function;

 λ = catalyst thermal conductivity, W·m⁻¹·K⁻¹;

 χ = Damköhler number for interphase heat transport;

 ω = Damköhler number for interphase mass transport.

$$\frac{-r'_{A}R^{2}}{C_{Ab}D_{e}} = [1.45*10^{-4}\text{kmol}\cdot\text{kg}_{cat}^{-1}\cdot\text{s}^{-1}]*[3.0*10^{-4}\text{m}]^{2}/([0.0147\text{kmol}\cdot\text{m}^{-3}]*[6.31*10^{-7}\text{m}^{2}\cdot\text{s}^{-1}]) = 1.41*10^{-3}$$

{Mears Criterion for Interphase and Intraparticle Heat and Mass Transport }

2. Mass and Heat Transfer Calculations for the methanation on Ni/NiAl₂O₄-M.

For PBR reaction mode $(67H_2/33CO)$.

2.1 Mears Criterion for External Diffusion (Fogler, p841; Mears, 1971).

If $\frac{-r_A' \rho_b Rn}{k_c C_{Ab}} < 0.15$, then external mass transfer effects can be neglected.

Where $-r_A' =$ reaction rate, kmol·kg_{cat}⁻¹·s⁻¹;

n = reaction order;

R = catalyst particle radius, m;

 ρ_b = bulk density of catalyst bed, kg·m⁻³;

= $(1-\phi)$ (ϕ = porosity or void fraction of packed bed);

 ρ_c = solid catalyst density, kg·m⁻³;

- C_{Ab} = bulk gas concentration of A, kmol·m⁻³;
- $k_c = mass transfer coefficient, m \cdot s^{-1}$.

$$\frac{-r_{A}'\rho_{b}Rn}{k_{c}C_{Ab}} = [2.38*10^{-4}\text{kmol}\cdot\text{kg}_{\text{cat}}^{-1}\cdot\text{s}^{-1}]*[312.5\text{kg}\cdot\text{m}^{-3}]*[3.0*10^{-4}\text{m}]*[1]/([0.64\text{m}\cdot\text{s}^{-1}]*[0.0147\text{kmol}\cdot\text{kmol}))$$

 m^{-3}])= 2.4*10⁻³ < 0.15 {Means for External Diffusion}

2.2 Weisz-Prater Criterion for Internal Diffusion (Fogler, p839).

If $C_{WP} = \frac{-r'_{A(obs)} \rho_c R^2}{D_e C_{As}} < 1$, then internal mass transfer effects can be neglected.

Where $-r'_{A(obs)} =$ observed reaction rate, kmol·kg_{cat}⁻¹·s⁻¹;

R = catalyst particle radius, m;

 $\rho_c =$ solid catalyst density, kg·m⁻³;

 $D_e = effective gas-phase diffusivity, m^2 \cdot s^{-1}$ [Fogler, p815]

$$=\frac{D_{AB}\phi_{p}\sigma_{c}}{\tau}$$

where $D_{AB} =$ gas-phase diffusivity m²·s⁻¹; $\phi_p =$ pellet porosity;

 σ_c = constriction factor; τ = tortuosity.

 C_{As} = gas concentration of A at the catalyst surface, kmol·m⁻³.

$$C_{WP} = \frac{-r'_{A(obs)} \rho_c R^2}{D_e C_{As}} = [2.38*10^{-4} \text{kmol} \cdot \text{kg}_{cat}^{-1} \cdot \text{s}^{-1}]*[500 \text{kg} \cdot \text{m}^{-3}]*[3.0*10^{-4} \text{m}]^2 / ([2.65*10^{-4} \text{m}^2 \cdot \text{s}^{-1}]*[0.0*10^{-4} \text{m}^2 \cdot \text{s}^{-1}]*[0.0*10^{-4}$$

 $147 \text{kmol} \cdot \text{m}^{-3}$]) = 2.7*10⁻³ < 1

{Weisz-Prater Criterion for Internal Diffusion}

2.3 Mears Criterion for External (Interphase) Heat Transfer (Fogler, p842).

The bulk fluid temperature, T, will be virtually the same as the temperature at the external surface of

the pellet when
$$\left| \frac{-\Delta H_r(-r_A')\rho_b RE}{h_t T_b^2 R_g} \right| < 0.15$$
.

Where ΔH_r = heat of reaction, kJ·mol⁻¹;

 $E = activation energy, kJ \cdot mol^{-1};$

 h_t = heat transfer coefficient between gas and pallet, kJ·m⁻²·s⁻¹·K⁻¹;

 R_g =gas constant, kJ·mol⁻¹·K⁻¹.

$$\frac{\left|-\Delta H_r(-r_A')\rho_b RE\right|}{h_t T_b^2 R_g} = [242.073 \text{kJ} \cdot \text{mol}^{-1}]^* [2.38^{*10^{-4}} \text{kmol} \cdot \text{kg}_{\text{cat}}^{-1} \cdot \text{s}^{-1}]^* [312.5 \text{kg} \cdot \text{m}^{-3}]^* [3.0^{*10^{-4}} \text{m}]^* [80^{-1}]^* [3.0^{*10^{-4}} \text{m}]^* [80^{-1}]^* [3.0^{*10^{-4}} \text{m}]^* [3.0^{$$

 $kJ \cdot mol^{-1}/([5.3kJ \cdot m^{-2} \cdot K^{-1} \cdot s^{-1}]*[673K]^{2}*[8.314*10^{-3}kJ \cdot mol^{-1} \cdot K^{-1}])=2.2*10^{-5}<0.15$ {Mears Criterion for External (Interphase) Heat Transfer}

2.4 Mears Criterion for Combined Interphase and Intraparticle Heat and Mass Transport (M ears, 1971).

If $\frac{-r'_{A}R^{2}}{C_{Ab}D_{e}} < \frac{1+0.33\gamma\chi}{|n-\gamma_{b}\beta_{b}|(1+0.33n\omega)}$, which indicates that there are no interphase or intraparticle heat

transfer or mass transport limitations for thepresent case.

$$\gamma = \frac{E}{R_g T_s}; \ \gamma_b = \frac{E}{R_g T_b}; \ \beta_b = \frac{(-\Delta H_r) D_e C_{Ab}}{\lambda T_b}; \quad \chi = \frac{(-\Delta H_r) - r'_A R}{h_t T_b}; \quad \omega = \frac{-r'_A R}{k_c C_{Ab}}$$

 γ = Arrhenius number; β_b = heat generation function;

 λ = catalyst thermal conductivity, W·m⁻¹·K⁻¹;

 χ = Damköhler number for interphase heat transport;

 ω = Damköhler number for interphase mass transport.

$$\frac{-r'_{A}R^{2}}{C_{Ab}D_{e}} = [2.38*10^{-4}\text{kmol}\cdot\text{kg}_{cat}^{-1}\cdot\text{s}^{-1}]*[3.0*10^{-4}\text{m}]^{2}/([0.0147\text{kmol}\cdot\text{m}^{-3}]*[1.43*10^{-6}\text{m}^{2}\cdot\text{s}^{-1}]) = 1.02*1$$

0⁻³<3

{Mears Criterion for Interphase and Intraparticle Heat and Mass Transport}