Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2018

Electronic Supplementary Information for

Silica-based micro- and mesoporous catalysts for dry reforming of methane

Ziwei Li, Sonali Das, Plaifa Hongmanorom, Nikita Dewangan, Ming Hui Wai and Sibudjing Kawi*

Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore

Email: chekawis@nus.edu.sg

 Table S1 Microporous silica-based catalysts for DRM reaction

	Synthesis	Catal	ytic perfo	ormance				Metal	
Catalyst	method	CH ₄	CO ₂	H ₂ /CO Ratio	Carbon resistance	Reaction Conditions	Reasons to performance	Loading wt%	Ref
Ni supported on silicalite-1 zeolite coated SiC foam (Ni/S-1/SiC)	Wet impregnation	65	40	1.3	Negligible after 30 h TOS	750 °C, GHSV = 15 Lg _{cat} -1h-1, CH ₄ : CO ₂ : O ₂ = 8: 2: 3	Strong MSI, small Ni particle size (4.5 nm after 100 h reaction) and high Ni dispersion	14	38
10Ni/10MgO-β zeolite	Wet impregnation	90	95	0.9	2mg _{coke} g _{cat} -1h-1	800 °C, GHSV = 60 Lg _{cat} -1h-1, CH ₄ : CO ₂ = 1:	Within 7 h, CH ₄ and CO ₂ conversions decreased by 10.5% and 8%, respectively	10	8
Ni-ITQ-6	Incipient wet impregnation	77	90	1.39	2.1% after 7 h	700 °C, GHSV = 30 $Lg_{cat}^{-1}h^{-1}$, CH ₄ : CO ₂ = 1:	Side reactions including Boudouard reaction and steam reforming reaction lead to high H ₂ /CO ratio	5	33
Ni-ZSM-5	Wet impregnation	95	98	0.9	1% after 30 h	800 °C, GHSV = 12 $Lg_{cat}^{-1}h^{-1}$, CH ₄ : CO ₂ =1: 1	Higher crystallization lead to higher catalytic performance	5	35
1Ni-2Co-ZSM-5	Wet impregnation	60	65	0.82	5% after 12 h	700 °C, GHSV = 60 Lg _{cat} -1h-1, CH ₄ : CO ₂ : N ₂ = 1: 1: 3	Synergistic effect between Ni and Co decreased carbon deposition	7	36
1.5Ni- 0.5Pt@Hollow silicalite-1	Incipient wet impregnation and silicon leaching	75	82	-	1% after 6 h	800 °C, GHSV = 72 Lg _{cat} -1h-1, CH ₄ : CO ₂ = 1:	Sintering of Ni outside shell occoured	1.5Ni- 0.5Pt	37

 Table S2 Mesoporous silica-based catalysts

		Cata	lytic perfor	rmance				Metal	
Catalyst	Synthesis method	CH ₄	CO ₂	H ₂ /C	C Carbon resistance Reaction Conditions		Remarks	Loadi ng wt%	Ref
Ni based	catalysts								
Ni- SBA-15		78	86	1.05	6.3% after 100 h		Strong MSI, small Ni particle size (4.5 nm after 100 h reaction) and high Ni dispersion		
Ni-KIT-		76	85	1.05	8.1% after 100 h		Strong MSI, small Ni particle size (6.5 nm after 100 h reaction) and high Ni dispersion		
Ni- MCM- 41	Solid-state grinding	decr ease fro m 79 % to 69 %	decreas e from 84% to 77%	0.93	38.8% after 100 h	700 °C, GHSV = 22.5 Lg _{cat} ⁻¹ h ⁻¹ , CO ₂ : CH ₄ = 1:1	Weak MSI, sintering of Ni, big Ni enwrapped by carbon nanotubes	5	40
Ni-KIT-	Impregnation	40	53	0.9	-	700 °C, GHSV = 60 Lg _{cat} ⁻¹ h ⁻¹ , N ₂ : CO ₂ : CH ₄ =3: 1: 1	Low Ni (0.5 wt%) loading lead to high dispersion but low DRM activity due to the low accessibility of Ni confined within the micropores of KIT-6	2	66
Ni- SBA-15	Impregnation (pretreated Ni precursor with (PEI))	87.5	88	0.92	Negligible after 40 h	750 °C, GHSV = 20 Lg _{cat} -1h-1, CO ₂ : CH ₄ : N ₂ = 2: 2: 1	NH ₂ groups in PEI help Ni precursor bond to the silanol groups on surface of SBA-15 and inhibit their sintering due to steric hindrance	-	55
5- Ni4/SB A-15	Impregnation [Ni ₄ O ₄] cubane cluster	65	-	0.88	5.56%	600 °C, GHSV = 36 Lg _{cat} -1h-1, CO ₂ : CH ₄ : N ₂ = 1: 1: 8	Small and highly dispersed NiO NPs	1.67	56

Ni/SBA -15	Impregnation with EG as solvent	87	96	1.1	Negligible after 20 h	750 °C, GHSV = 7.5 Lg _{cat} ⁻¹ h ⁻¹ , CO ₂ : CH ₄ = 1: 1	Interesting and effective method to prepare mesoporous silica confined catalysts	-	54
Ni- hexagon al mesopor ous silica	One pot self-assembled method	76	84	0.8	5% after 100 h	700 °C, GHSV = 22.5 Lg _{cat} -1h-1, CO ₂ : CH ₄ = 1:1	Stable conversion within 100 h	7.5	67
Ni based b	bimetallic catalyst								
Ni9Co1 -SBA- 15	Urea co- precipitation	60	73	1	Negligible after 50 h	700 °C, GHSV = 72 Lg _{cat} -1h-1, CO ₂ : CH ₄ = 1: 1	High metal dispersion (ca. 17–20%) and small metal particle sizes (ca.4–5 nm), synergetic effect of Co and Ni, confinement effect	10	24
0.5Ru/1 2Co/SB A-15	Two-solvent impregnation	43	51	1.1	-	550 °C, GHSV = 67 Lg _{cat} -1h-1, CO ₂ : CH ₄ = 1: 1	Ru addition enhanced the reducibility of Co species, stabilized Co from migration and increased active phases	0.5R u- 12Co	68
Perovskite	e catalyst								
LaNiO ₃ -SBA- 15	Wet impregnation	75	67	1.05	4.5	700 °C CHSV - 26	Stable structure restricted the agglomeration of Ni		
LaNiO ₃ –MCM- 41	with metal citrate complex	77	66	1.0	4.8	700 °C, GHSV = 36 $Lg_{cat}^{-1}h^{-1}$, CO ₂ : CH ₄ = 1:1	MCM-41 structure collapsed after reaction leading to some Ni sintering	10	48
LaNiO ₃ -SiO ₂	precursors	60	61	0.95	5.7		Carbon deposition leads to worse catalytic performance		
La ₂ NiO ₄ -KIT-6	Sol-gel	100	100	0.95	3.75% after 60 h	800 °C, GHSV = 33.6 Lg _{cat} -1h-1, CO ₂ : CH ₄ = 1: 1	Stable cubic structure of KIT-6 and the formation of La ₂ O ₃ prevented Ni sintering	10	69
Ni based o	catalysts with pror	noters							
3Sm- 10Ni-	Two-solvent impregnation	70	75	H ₂ and	No peaks observed for	700 °C, GHSV = 12 $Lg_{cat}^{-1}h^{-1}$, CO ₂ : CH ₄ =	High oxygen storage capacity and redox potential of Sm ₂ O ₃ , improved Ni dispersion and MSI	10	71

SBA-15				CO select ivity of 0.88 and 1.05, respe ctivel	TPO after 5 h	1: 1			
1Sm- 10Ni- SBA-15	Two-solvent impregnation	56	66	-	20% after 12 h	700 °C, GHSV = 12 $Lg_{cat}^{-1}h^{-1}$, CO ₂ : CH ₄ = 1: 1	Small NiO size and high dispersion, the findings of opposite effects of Sm upon the catalytic performance of Ni-SBA-15 and Co-SBA-15 is interesting	10	72
Ni- AlSBA- 15	Impregnation with ethylene glycol as solvent	73	80	0.97	1.5% after 20 h	700 °C, GHSV = 18 Lg _{cat} -1h-1, CO ₂ : CH ₄ = 1:1	Ultra-small Ni size, high Hydrothermal stability, confinement effect of the mesoporous channels of AlSBA-15	7	73
5Co- 5Ni/5Sc -SBA- 15	Hydrothermal	74 % to 65 % wit hin 50 h	81% to 70% within 50 h	-	13% weight loss after 7 h	700 °C, CO ₂ : CH ₄ : N ₂ =2.83:2.83:1, F/W= 133.33 mLg _{cat} ⁻¹ min ⁻¹ , total flow rate= 40 mL min ⁻¹	Better dispersion of Co and Ni, strong MSI	10	26
3B- 10Ni/S BA-15	Sequential incipient wet impregnation	78	80	2.6	1.5% 800 °C	800 °C, CH ₄ :H ₂ O:CO ₂ = 3:2:1	Enhancing interaction between the acidic B_2O_3 and basic NiO phases	10	74

1La- 5Ni/SB A-15	Incipient wet impregnation method with oleic acid as precursor	83	86	0.92	Negligible after 10 h at 700 °C	700 °C, GHSV = 72 Lg _{cat} -1h ⁻¹ , CO ₂ : CH ₄ : N ₂ = 1: 1: 1	Interesting synthesis method to achieve high Ni dispersion and sintering resistance	5	13
7La- 6Ni/SB A-15	Wet impregnation method	73	80	0.8	-	750 °C, GHSV = 20 Lg _{cat} -1h-1, CO ₂ : CH ₄ : N ₂ = 1: 1: 3	Highly dispersed La promotes generation of small Ni and CO ₂ dissociation into oxygen atom, facilitating the formation of different C1 intermediates on Ni surface	6	76
20LaNi -SBA	In situ auto- combustion	48	60	0.61	Carbon balance 91%	600 °C, GHSV = 600 Lg _{cat} ⁻¹ h ⁻¹ , CO ₂ : CH ₄ = 1: 1	smaller CH ₄ activation energy of 64.7 kJmol ⁻¹ due to small Ni size of 3 nm	20La NiO ₃	52
10Ni- 8Mg- SBA-15	Incipient wetness impregnation	67	57	-	-	700 °C, GHSV = 36 Lg _{cat} -1h-1, CO ₂ : CH ₄ = 1: 1	Mg incorporation promoted Ni dispersion and basic properties of SBA-15 via metal-support interaction, inhibiting carbon formation	10	70
10Ni- 8MgO- coated SBA-15	One pot hydrothermal and wet impregnation	73	65	1.0	6% after 40 h	700 °C, GHSV = 36 Lg _{cat} -1h-1, CO ₂ : CH ₄ = 1: 1	Better order in the meso-structure and more medium basic sites were formed, enhanced Ni dispersion and improved catalytic performance and carbon resistance.	10	47
NiCe/S BA-16	Incipient wetness impregnation	72	77	0.72	3.8% after 100 h	700 °C, GHSV = 45 Lg _{cat} ⁻¹ h ⁻¹ , CO ₂ : CH ₄ : He = 1: 1: 1	CeO ₂ confinement effect of stable cage-like pores	5	43
2Ni– 1Zr- MCM- 41	One pot hydrothermal	92	-	0.98	6% after 72 h	750 °C, GHSV = 45 Lg _{cat} -1h-1, CO ₂ : CH ₄ : He = 1: 1: 1	Addition of Zr ⁴⁺ enhanced the structural stability, increased Ni dispersion, partial activation of CO ₂	2	50
9Y-9Ni- SBA-15	Sol-gel	85	90	0.9	1.2% after 50 h	700 °C, GHSV = 24 $Lg_{cat}^{-1}h^{-1}$, CO ₂ : CH ₄ = 1: 1: 1	Stable conversions of CH ₄ and CO ₂ within 50 h TOS with a 6% and 4% decrease, respectively	9	75

Table S3 SiO₂-based catalysts for DRM reaction

		Catal	ytic per	formance				Metal	
Catalyst	Synthesis method	CH ₄	CO ₂	H ₂ /CO	Carbon resistance	Reaction Conditions	Remarks	Loading wt%	Ref
Ni/SiO ₂ (OAm)		70	75	0.95	17 h &				
Ni/SiO ₂ (OAc)	Incipient	32	40	0.8	negligible	700 °C	A stronger steric hindrance is given		
Ni/SiO ₂ (OAmc)	wetness impregnati on	12	25	0.5	carbon formation on Ni/SiO ₂ OAmc	$GHSV = 72 L g_{cat}$ ${}^{1}h^{-1}$	by the more complex aliphatic chain network of the pair, retarding the growth of Ni particle.	5	53
Ni-Cu/SiO ₂	Wetness Impregnati on	90	90	-	140 h	-	The addition of Cu into Ni fine- tuned the catalytic activity by balancing the CH ₄ cracking and coke oxidation by CO ₂	8Ni-1Cu	82
Ni-Cu/SiO ₂	Incipient Wetness impregnati on	60	70	0.9	30 h & 8% carbon formation	700 °C , GHSV = 16 Lh ⁻¹ , CH ₄ :CO ₂ :He = 1: 1: 8	Strong metal–support interaction and the well dispersed small metal-nanoparticles	5.5Cu- 20.9Ni	83
NiFe ₂ O ₄ Spinel/ SiO ₂	Sol-Gel Hydrother mal	66	93	1.1	-	800 °C, GHSV=54 Lh ⁻¹ , CH ₄ :CO ₂ : He =2:1:6	NiFe ₂ O ₄ on silica has more acidic properties provides a more active and selective catalyst that seems less prone to coking.	10	84
NiFe ₂ O ₄ /SiO ₂	Modified hydrother mal	80	72	0.88	60 h and 7.24 mg carbon.	200 W (Plasma assisted) CH_4 : $CO_2 = 1$: 1 $GHSV = 12 Lg_{cat}$ $^1h^{-1}$	The special structure of the assynthesized NiFe ₂ O ₄ #SiO ₂ catalyst prevented the carbon formation in the process and restrained aggregation of Ni-Fe alloy.	Ni/Fe = 0.5	85

Fe-Ni/MgAl ₂ O ₄	co- precipitati on and incipient wetness impregnati on	51	-	-	-	$800 ^{\circ}\text{C}$ $\text{CH}_4: \text{CO}_2 = 1: 1$ $\text{W}_{\text{cat}} / \text{F}_{\text{CH}4} = 0.40 - 0.71 \text{kg}_{\text{cat}}$ smol^{-1}	The Fe-Ni alloy is the active phase where Fe segregates to form FeOx. It reduces the surface carbon accumulation through interaction with FeOx lattice oxygen, producing CO.	8Ni-5Fe	87
Ni-Co/SiO ₂	Incipient wetness impregnati	80	82	-	30 h & 0 mg	700 °C, CH ₄ : CO ₂	Ni-Co are uniformly distributed and thus led to strong metal support interaction	4Ni-1Co	
Ni/SiO ₂	on using oleic acid	75	78	-	30 h & 0 mg	$= 1: 1, \text{ GHSV} = 72 \text{Lg}_{\text{cat}}^{-1} \text{h}^{-1}$	-	5	88
Co/SiO ₂	and oleylamin e	30	30	-	30 h & 0 mg carbon/mgcath	/2Dgcat II	-	5	
Ni-Co/SiO ₂ derived from phyllosilicates	One pot hydrother mal method	85	90	0.85	100 h & Negligible coke formation	750 °C CH_4 : $CO_2 = 1$: 1 GHSV = 60000 $mLg_{cat}^{-1}h^{-1}$	Addition of Co enhanced metal support interaction and thus prevented carbon formation for 100 h operation	7Ni-3Co	89
Co-Ru-Zr/SiO ₂	Wetness	70	83	0.82	-	700 °C, CH ₄ : CO ₂ =1:1,	An appropriate support and amount		
Co-Ru-Zr/γ-Al ₂ O ₃	impregnati	81	90	0.92	-	GHSV=20L g _{cat}	of Ru played crucial role in activity and stability of the catalyst	0.4Ru	90
Co-Ru-Zr/ MgO		59	71	0.76	-	¹ h ⁻¹	and state into sample		
Sn, Ce, Mn, Co promoted Ni _x Mg _{1-x} O	A bottom up approach	75	85	0.9	100 h & 26.65% coke deposition	750 °C, CH ₄ :CO ₂ =1: 1, GHSV= 20L g _{cat} -1h-1	Distribution of promoters in crucial to enhance the performance of the catalyst.	1promoters- 10 Ni	91
Sn modified Ni/Al ₂ O ₃	Co- impregnati on method	60	-	-	8 h & 17 mg g _{cat} -1.h-1	800 °C CH_4 : $CO_2 = 1$: 1 GHSV = 72 mL $g_{cat}^{-1}h^{-1}$	Sn ⁴⁺ enriched the NiO particle surface and facilitated the formation of Ni-Sn alloy and increased the reducibility of NiAl ₂ O ₄	11.3 Ni– 0.45Sn	92

Sn doped Ni/SiO ₂	Wetness impregnati on	-	-	0.4	25 h & 1.8 mol _{carbon} /mol _{Ni}	500 °C, CH ₄ : CO ₂ =2.3: 1.8 GHSV=6000 mol _{reactant} .h ⁻¹ .mol ⁻¹ totNi	Addition of Sn showed to have negative effect on Ni atoms decreasing 3-4-fold the intrinsic activity	0.87Ni- 0.014Sn	93
Ni-In/SiO ₂	Deposition - precipitati on method	30	78	0.73	-	675 °C CH ₄ : CO ₂ = 2.3: 1	Indium atom dilute the surface of the nickel forming multiple bonded carbon species and thus prevent carbon formation	3Ni–2In	94
Ni/α-Al ₂ O ₃	Co - impregnati	62	78	-	$\begin{array}{c} 45 \\ g_{cat}.h^1) \end{array} (mg_{coke}$	800 °C CH ₄ :CO ₂ =1: 1 GHSV = 60L g _{cat}	Sn increased the dispersion of Ni, retarded sintering of Ni thus retarding the coke formation	0.02Sn-10	95
Sn0.02Ni/α-Al ₂ O ₃	on	38	58	-	0(mg _{coke} g _{cat} .h ⁻ 1)	¹ h- ¹	-		
One step Ni on Al (OsNiAl)		98	98	1					
One step Ni on Si (OsNiSi)	Solvother mal and	98	99	0.6	Weight loss is observed in	700 °C GHSV = 5000–	Catalysts with more acidic or basic surfaces were found to be more		
Two step Ni on Al (TsNiSi)	sequential impregnati	90	90	0.65	different regions of	50000 mLg _{cat} ⁻¹ h ⁻¹ CH ₄ : CO ₂ =1: 1	prone to deactivation and metal sintering.	-	96
Two step Ni on Al (TsNiAl)	on	25	25	0.82	temperature		_		
Ni-phyllosilicate structure derived Ni-SiO ₂ -MgO	Ammonia Evaporatio n method	80	62	2.0	135 h /Small amount of coke formation	750 °C, GHSV=100 Lg _{cat} -1h-1, CH ₄ :CO ₂ :H ₂ O =2:1:2	enhanced basicity strength, reasonable moderate acidity strength and structural stability	15Ni–30- SiO ₂ – 55MgO	97

Ni supported on Silica/Ceria- Zirconia particles	Flame spray pyrolysis (FSP)	80	-	1.0	24 h / 0.5 gcarbon/gcat	$700 ^{\circ}\text{C}$ WHSV = 144 $Lg_{\text{cat}}^{-1}h^{-1}$ CH ₄ : CO ₂ =1: 1	Introducing silica to the ceria- zirconia enabled the mixed supports to outperform the neat ceria- zirconia by decreasing susceptibility toward the RWGS and preventing deactivation.	10-Si/CeZr ratio of 2:1	98
Ni (NPs) immobilized Ce- mesoporous SiO ₂	sublimatio n- deposition strategy	90	98	1.2	20 h & Negligible coke formation	750 °C , GHSV=6 Lg _{cat} -1h-	The confinement effect deriving from the mesoporous channels of silica support, as well as the high dispersion and reducibility of Ni NPs.	10.1	99
Rh/CaO-SiO ₂	Incipient wetness impregnati on	46	-	0.88	-	550 °C CH_4 : $CO_2 = 1$: 1 $W/F = 2.67 \times 10^{-5}$ $g h mL^{-1}$	The incorporation of CaO increased metal dispersion	8	100
Ni–La ₂ O ₃ /SiO ₂	Wetness impregnati on using oleic acid	80	85	0.8	100 h and small amount of coke formation	700 °C CH ₄ : CO ₂ =1: 1 GHSV = 72 L g _{cat} ⁻¹ h ⁻¹	The addition of La ₂ O ₃ enhanced the interaction between NiO and the silica support to form a more stable nickel silicate.	10	19
Ni–La ₂ O ₃ /SiO ₂	Poly(ethyl ene glycol)- assisted sol-gel route	98	98	1.04	40 h & coke deposition = 236 mg/g _{cat}	800 °C CH_4 : $CO_2 = 1$: 1 $GHSV = 2.4 \times 104$ mL $g_{cat}^{-1}h^{-1}$	The presence of La significantly inhibited the reverse water gas shift reaction, resulting in a H ₂ /CO ratio close to unity.	17.5	101
Alumina coated Ni nanoparticle	Atomic layer deposition	80	-	-	-	$700 ^{\circ}\text{C}$ $GHSV = 3600$ $Lg_{cat}^{-1}h^{-1}$ $CH_4: CO_2 = 1: 1$	The formation of alumina coating strongly inhibits catalyst sintering thus significantly increases the activity and stability of the NiO-5 catalyst.	5	105

TiO ₂ coated Ni	Atomic layer deposition	58.6	62.6	0.72	-	800 °C CH ₄ : CO ₂ =1:1 GHSV = 12 Lg _{cat}	The TiO ₂ layer facilitated the formation of separate carbon filaments rather than the graphitic layer on the Ni, reducing the possibility of the deposited carbon layers to cover and poison the Ni active sites of catalysts.	-	106
Ni@yolk-ZrO ₂	Reverse Micelle	90	-	-	50 h & No coke formation	750 °C GHSV = 50400 mL $g_{cat}^{-1}h^{-1}$	Amount of micropores in ZrO ₂ hollow shells and the surfactant addition directly affected the physical properties of the ZrO ₂ hollow shell	13.45	107
Ni-Yolk@Ni@ SiO ₂	microemul sion	90	95	0.81	90 h & negligible coke formation	800 °C GHSV = 36000 mL $g_{cat}^{-1}h^{-1}$ CH ₄ : CO ₂ = 1: 1	Highly dispersed Ni nanoparticles in the shell and core imparts dual effects of formation of small satellite Ni particles due to strong Ni–SiO ₂ interactions.	18.68	15
Ni@Ni- Mg phyllosilicate	Hydrother mal	78	81	0.98	90 h & negligible coke formation	700 °C GHSV = 1440 L $g_{cat}^{-1}h^{-1}$ CH ₄ : CO ₂ = 1: 1	Higher nickel dispersion, strong basicity due to the presence of Mg which prevents carbon deposition by reverse disproportionation	6.3Ni- 21.6Si- 7.8Mg	110
Ni@SiO ₂	Immobiliz ation Ni nanopartic les on silica	42	64	0.70	160 h & no carbon deposition	800 °C GHSV = 19000 mL g _{cat} -1min-1 CH ₄ : CO ₂ : N ₂ = 9: 9: 2	The over-layer of silica as compared to normal supported catalyst allowed the facile mass transfer of the reactants and products.	10.5	108

Ru-Co@SiO ₂ - PVP	Hydrother mal (or	74	85	0.98		700 °C	Uniform Ru distribution through a		
Ru-Co@SiO ₂ - CTAB	impregnati on) and modified	71.3	77	0.91	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$CH_4: CO_2 = 1: 1$ $CH_4: CO_2 = 54000$	hydrothermal approach resulted in more direct Co-Ru interaction,	1.2Ru-82.2 Co	111
Ru-Co@SiO ₂ -No surfactant	Stöber processes	66.3	76.2	0.81	Com	$mL g_{cat}^{-1}h^{-1}$	making Co-based cores rather coking- and oxidation-resistant		
NiCo@SiO ₂	Micro- emulsion method	87.2	88.9	-	50 h & Negligible coke formation	800 °C CH_4 : $CO_2 = 1$: 1 GHSV = 300 mL $g_{cat}^{-1}h^{-1}$	The encapsulation of metal nanoparticles by SiO ₂ shell could effectively inhibit the agglomeration of active sites.	10	112
Cu–Ni@SiO ₂	Micro- emulsion	75	-	0.9	18 h & negligible coke formation	700 °C GHSV = 13.33 L $g_{cat}^{-1}h^{-1}$ CH ₄ : CO ₂ = 1: 1	proper percentage of Cu improved the performance and stability.	1Cu-2.4 Ni	114
Multiple core@shell	One -pot reverse phase microemul sion	90	90	-	100 h & negligible coke formation	800 °C GHSV = 18000 mL g _{cat} -1h-1 CH ₄ : CO ₂ = 1: 1	Ultra-small Ni nanoparticles (4.3 nm) and confinement effect between metal and support.	4.93	115
Sandwich-Like Silica@Ni@Silica Multicore–Shell	Ammonia evaporatio n	50	60	0.75	24 h & 7.6 % coke formation	$800 ^{\circ}\text{C}$ GHSV = 60 000 $mLg_{cat}^{-1}h^{-1}$	The thickness of the shell was varied by amount of TEOS and catalyst prepared by 0.4 ml TEOS showed higher activity.	3.5	117
Ni-Mg phyllosilicate nanotubes@ SiO ₂	Hydrother mal	86	90	0.8	75 h & no coke formation	750 °C GHSV = $60 L g_{cat}^{-1}h^{-1}$ CH ₄ : $CO_2 = 1: 1$	confinement effect conferred by stable mesoporous silica shell.	11.6-Ni-9.2 Mg-33.6Si	118