
Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2018

Chemical Communication – Supporting Information

Acceptorless Dehydrogenation of Alcohols using Cu-Fe Catalysts Prepared from Cu-Fe Layered Double Hydroxides as a Precursor

Wahyu Satpriyo Putro, Takashi Kojima, Takayoshi Hara, Nobuyuki Ichikuni, Shogo Shimazu* *Graduate School of Engineering, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan*

Experimental of Cu-Fe based catalysts synthesis method

Materials

Copper (II) nitrate trihydrate (WAKO), Iron (III) nitrate nonahydrate (WAKO), NaOH (WAKO), p-xylene (WAKO), and trans-decahydronaphthalene (WAKO) were purchased and used as received. Organic chemical compounds, such as 1-phenylethanol (WAKO) and DMSO (TCl, >98%) were purified using procedures recorded at Purification of Laboratory Chemicals.

Synthesis of Cu-Fe(3)LDH

The Cu-Fe(3)LDH sample was typically prepared in the following procedure: at room temperature, Cu(NO₃)₂·3H₂O (4 mmol) and Fe(NO₃)₃·9H₂O (2 mmol) was dissolved in 85 mL deionized water. The mixture solution was stirred 30 minutes at room temperature. About 15 M NaOH 2.0 M was dropwisely added to mixture solution. The solution was refluxed at 333 K for 24 h under air atmosphere.

Synthesis of Cu-Fe catalysts

Cu-Fe catalysts were produced by reduction process of the LDHs precursors. The reduction process followed three pathways to obtain Cu-Fe catalysts using various reductants, i.e. molecular H₂ or ethylene glycol. At the first pathway, the Cu-Fe LDHs were calcined at 923 K for 5 h under an air atmosphere (Cu-Fe_C-973), prior to the reduction process using 30 mL ethylene glycol in an autoclave reactor at 423 K for 24 h to give reduced-calcined Cu-Fe catalysts (denoted as R_Cu-Fe_C). At the second procedure, the reduction of calcined Cu-Fe catalysts with molecular H₂ at 573 for 1 h produced Cu-Fe catalysts, denoted as Cu-Fe_C_HT. Another process is the reduction of Cu-Fe LDHs (without calcination treatment) with molecular H₂ at 573 K for 1 h to give Cu-Fe HT-573 catalysts.

Synthesis of supported Cu/Fe₃O₄ catalysts

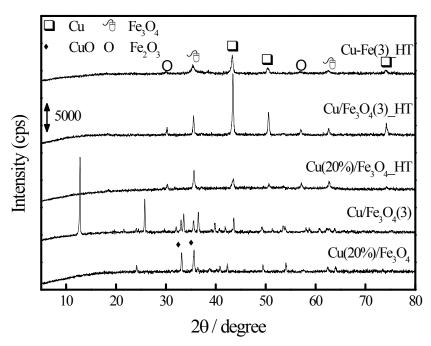
The supported Cu/Fe₃O₄ catalysts were synthesized by various methods, such as impregnation (Cu/Fe₃O₄^{imp}), co-precipitation (Cu/Fe₃O₄^{co-p}), and physical mixture (Cu/Fe₃O₄^{pm}) methods. The Cu(20%)/Fe₃O₄^{imp} catalysts were prepared by the following procedure: at room temperature, Cu(NO₃)₂·3H₂O (0.7609 g) was diluted to the 100 mL of deionized water. The Fe₃O₄ (0.8 g) was added to the Cu solution. The mixture was then stirred at 373 K to vaporized the water. The black powder was dried under vacuum condition overnight at room temperature. The dried powder was reduced with an H₂ treatment at 573 K prior to the catalytic test. The Cu/Fe₃O₄(3)^{imp} catalysts were prepared with the same procedure with Cu(20%)/Fe₃O₄^{imp}, but using Cu(NO₃)₂·3H₂O (3.624 g) and Fe₃O₄ (0.3859 g) as the starting materials. Cu(20%)/Fe₃O₄^{co-p} catalysts were prepared by the following pathway: Cu(NO₃)₂·3H₂O (0.7609 g) was diluted to the 85 mL of deionized water before the addition of Fe₃O₄ (0.8 g). The mixture was stirred and mixed with NaOH 2M 15 mL as a precipitator at room temperature. The suspension was

subsequently placed in a sealed Teflon lined autoclave for the hydrothermal process at 423 K for 24 h. The black fluffy solid was filtered, washed using deionized water and acetone several times, and dried under vacuum overnight. The black powder was treated with H₂ at 573 K prior to the catalytic reaction. The Cu/Fe₃O₄(3)^{co-p} catalysts were prepared with the identical procedure with Cu(20%)/Fe₃O₄^{co-p}, but using Cu(NO₃)₂·3H₂O (3.624 g) and Fe₃O₄ (0.3859 g) as the starting materials. Finally, the Cu(20%)/Fe₃O₄^{pm} catalysts were prepared by following pathway: Cu metal (0.2 g) was simply added Fe₃O₄ (0.8 g) and ground into the mortar before taking H₂ treatment for activation. The Cu/Fe₃O₄(3)^{pm} catalysts were prepared with the similar manner to Cu(20%)/Fe₃O₄^{pm}, but using 0.66 g of Cu metal and Fe₃O₄ (0.8 g) as the starting materials.

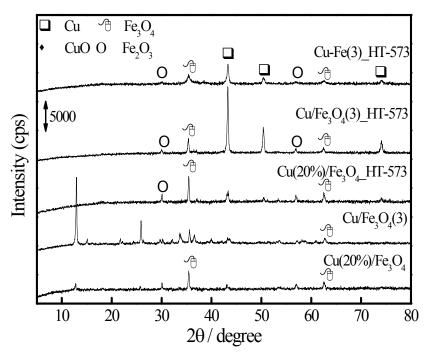
Catalytic test

The mixture of catalyst (100 mg), 1-phenylethanol (1 mmol), *trans*-decahydronaphthalene (0.08 g), and solvent (p-xylene, 3 mL), was poured into the Schlenk tube, followed by filling with N₂. Then, the resulting mixture was stirred under reflux, and the reaction temperature was varied in the range of 100-130 °C. Conversion and yields of products were determined by GC using *trans*-decahydronaphthalene as an internal standard. The other unknown products were identified by GC-MS.

Analytical technique


Gas Chromatography (GC)

Substrate conversion was determined by GC (Shimadzu GC-14B) equipped with a flame ionization detector, and RT-βDexSm (30 m, DF=1.4 μm, 0.25 mm) for monitoring the dehydrogenation of 1-phenylethanol with *trans*-decahydronaphthalene as an internal standard. The GC was operated under the conditions as follow: injection temperature (230 °C), detection temperature (230 °C), initial temperature (120 °C), initial time (1 min) progress rate (10 °C/min), final temperature (180 °C), and final time (1 min). The other substrates of secondary alcohols are detected by using Rtx-BAC PLUS 1 or InertCap 624 column, depending on the peak separation. The sample was introduced into the column *via* split mode (1/50) and the system used nitrogen gas as a carrier gas with the rate of 50 kPa at carrier P1 and 100 kPa at carrier P2.


X-Ray Diffraction

XRD measurements were recorded on a D8 ADVANCE, Bruker using monochromatic Cu K α radiation ($\lambda = 0.15418$ nm). The XRD was operated at 40 kV and 40 mA with divergence and scattering slit 1° , a step width of 0.02° and scan speed of 2° min⁻¹.

Result

Fig. S1 XRD patterns of Cu-Fe(3)_HT-573 and various treatments of Cu/Fe₃O₄ catalysts prepared by co-precipitation method.

Fig. S2 XRD patterns of Cu-Fe(3)_HT-573 and various treatments of Cu/Fe₃O₄ catalysts prepared by impregnation method.

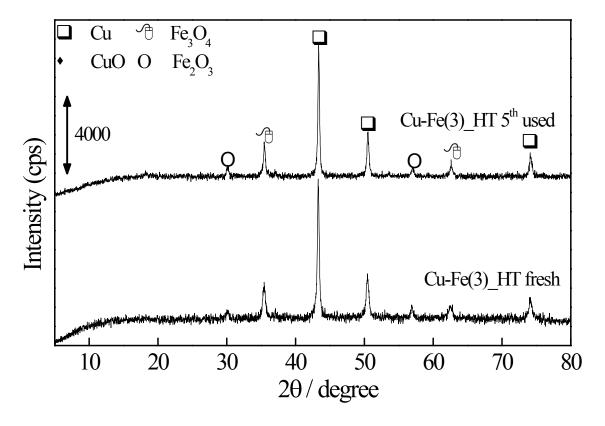
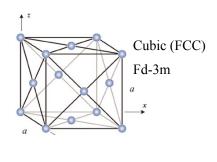



Fig. S3 XRD patterns of fresh and used Cu-Fe(3)_HT-573 catalysts

Table S1. The crystallite size of Cu metal on Cu-Fe catalysts after taking various treatments

Entry	Catalyst	D(nm)	a (Å)
1	Cu-Fe(3)_HT-573	33.2	3.62
2	Cu-Fe(3)_C_HT-573	48.1	3.62
3	Cu-Fe(3)_C_R	56.3	3.62
4	Cu-Fe(3)_HT-573 (used)	32.1	3.62

The crystallite size, D, was calculated using Debye-Scherrer equation from the XRD of Cu (111) peak at $2\theta \sim 43^\circ$. The lattice constant, a, was calculated from the peak of Cu(111) based on the index of cubic (FCC) with a space group of Fd-3m.

Table S2. The quantification data of H₂ and acetophenone formation with time progress.

1-phenylethanol

A ceto	phenone
Accio	phenone

Time	Conv.	Product	Product	Product	H ₂ production		H ₂ sel. ^c	
(h)	(%)	(%)	(mmol)	sel.a (%)	V1	V2	H_2^b	(%)
0	0	0	0	_	50.8	0	0	_
1	37.3	37.3	0.41	100	42	8.8	0.39	95.1
2	50.3	50.3	0.56	100	39.3	11.5	0.51	91.1
4	69.5	69.1	0.77	99.4	34.6	16.2	0.72	93.5
8	90.1	89.3	0.99	99.1	30.4	20.4	0.91	91.9
12	93.5	92	1.02	98.4	29.5	21.3	0.95	93.1
16	97.1	95.5	1.06	98.4	29.3	21.5	0.96	90.6
20	100	97	1.08	97	29.1	21.7	0.97	89.8

^aSelectivity of product (acetophenone). V1 = volume monitored in volumetric flask (mL). V2 = volume of H₂ gas formed (initial volume monitored – volume monitored at a certain time) (mL). ^bMole of H₂ (mmol) is converted in turns of V_{STP} (22.4 L.mol⁻¹). ^cH₂ selectivity (H₂ Sel. = mole of H_2 / mole of product * 100%)

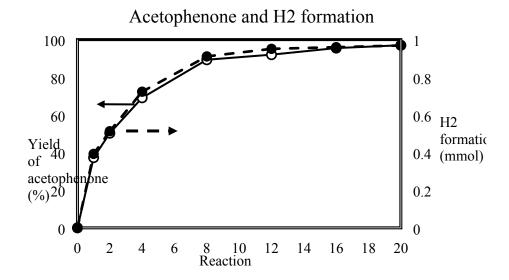


Fig. S4 The evolution of H₂ and acetophenone formation with the time progress.

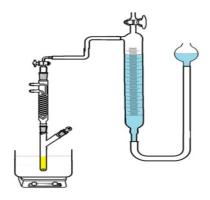


Fig. S5 Reaction setup for the measurement of evolved hydrogen gas.

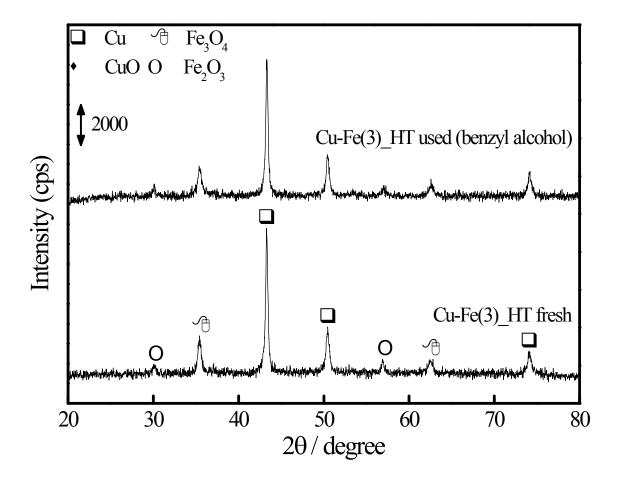

Scheme. S1 The large-scale dehydrogenation of 1-phenylethanol (16.5 mmol).

Table S3. AD reaction of benzyl alcohol using Cu-Fe(3)HT with the various condition.

$$\begin{array}{c|c} \hline \\ OH \\ \hline \\ Benzyl \ alcohol \\ \hline \end{array} \begin{array}{c} \hline \\ Cu\text{-Fe(3)HT} \\ \hline \\ Benzaldehyde \\ \hline \end{array}$$

Entry	T(K)	Additive	Solvent	Conversion (%)	Yield (%)
1	388	_	p-xylene	34	31
2	398	_	p-xylene	63	38
3	408	_	p-xylene	81	46
4	388	La_2O_3	p-xylene	27	16
5	388	Y_2O_3	p-xylene	27	25
6	388	MgO	p-xylene	70	21
7	388	КОН	p-xylene	80	4
8	388	KHCO ₃	p-xylene	46	10
9	388	t-BuOK	p-xylene	98	6
10	388	_	DMF	13	13
11	388	_	o-xylene	51	34
12	388	_	DMSO	15	15

Reaction conditions: $W_{CAT} = 100$ mg; $W_{ADD} = 25$ mg; $C^{\circ}_{SUBS} = 0.37$ M; $V_{SOLV} = 3$ mL; t = 20 h; N_2 atmosphere.

Fig. S6 XRD patterns of fresh Cu-Fe(3)_HT-573 catalyst and Cu-Fe(3)_HT-573 catalyst after used for dehydrogenation of benzyl alcohol.

Table S4. The effect of various substrate on the AD reaction using Cu-Fe(3)_HT catalysts

Entry	Substrate I	Substrate II	Conversion (%)	Yield (%)
1	1-Phenylethanol	_	100	97
2	Benzyl alcohol	_	32	32
3	он 1-Phenylethanol	Benzyl alcohol	Substrate I = 42 Substrate II = 26	Substrate I = 38 Substrate II = 22

 $\textit{Reaction conditions}: \ W_{CAT} = 100 \ mg; \ C^{\circ}_{SUBS} = 0.37 \ M; \ V_{P\text{-XYLENE}} = 3 \ mL; \ T = 388 \ K; \ under \ N_2 = 100 \ mg; \ N_3 = 100 \ mg; \ N_3 = 100 \ mg; \ N_3 = 100 \ mg; \ N_4 = 100 \ mg; \ N_5 = 100 \ mg; \ N_7 = 100 \ mg; \ N_8 = 1000 \ mg; \ N_8 = 100 \ mg; \ N_8 = 100$ atmosphere.