Supplementary Information

 Table S1. Kinetic constants using first-order kinetic model for photocatalytic

 reduction of Cr (VI) and photocatalytic degradation of dimethoate over different

 photocatalysts.

		g-C ₃ N ₄	C/g-C ₃ N ₄	α-Fe ₃ O ₄ /C/g-C ₃ N ₄
Cr(VI)	$k_{\rm obs}$ / min ⁻¹	0.0017	0.0109	0.0355
	(Adj- r^2)	(0.99)	(0.99)	(0.97)
Dimethoate	$k_{\rm obs}$ / min ⁻¹	0.0095	0.0112	0.0203
	(Adj- r^2)	(0.99)	(0.99)	(0.98)

Table S2. The values of fitted PL lifetime τ_i and corresponding constant A_i of g-C₃N₄,

$C/g-C_3N_4$,	and Fe ₃	$O_4/C/g_{-1}$	C_3N_4 ,	respectiv	vely.
	•••=••j		-),		· j ·

	τ_1 / ns (A ₁)	$ au_2 / ns$ (A ₂)	τ ₃ / ns (A ₃)	$<\tau>/ns$	χ^2
g-C ₃ N ₄	1.55 (1362.2)	4.91 (565.0)	21.57 (86.8)	8.48	0.927
C/g - C_3N_4	1.33 (1630.1)	4.59 (434.0)	18.75 (47.36)	5.68	0.902
Fe ₃ O ₄ /C/g-C ₃ N ₄	1.27 (1640.0)	4.08 (429.2)	15.53 (54.22)	4.89	0.943

*The photoluminescence decays were fit to Eq. (S1) as three exponentials using the PicoQuant software (Fluofit, PicoQuant) so that the lifetimes (τ_i) and the preexponential factors (A_i) were determined. The value of χ^2 , as well as visual inspection of the residuals were used to determine how well the calculated decay fitted the experimental data. Fits were considered acceptable when the χ^2 value was between 0.9 and 1.1. The intensity-average lifetime of the emission decay is calculated by Eq. (S2).

$$I(t) = I_0 \sum_{1}^{i} A_i e^{-t/\tau_i}$$
 (S1)

$$<\tau>=\frac{A_{1}\tau_{1}^{2}+A_{2}\tau_{2}^{2}+A_{3}\tau_{3}^{2}}{A_{1}\tau_{1}+A_{2}\tau_{2}+A_{3}\tau_{3}}$$
(S2)

Figure S1. Thermogravimetric curve of Fe₃O₄/C/g-C₃N₄.

Figure S2. Elemental proportion in α -Fe₃O₄/C/g-C₃N₄ from EDS elemental analysis.

Figure S3. FTIR of carbon (a), $g-C_3N_4$ (b), $C/g-C_3N_4$ (c) and $Fe_3O_4/C/g-C_3N_4$ (d).

Figure S4. UV-vis diffuse reflectance spectra of Fe₃O₄/C/g-C₃N₄, C/g-C₃N₄, and g-C₃N₄.

Figure S5. Absorption and photoreduction of Cr (VI) (20 mg/L) by Fe₃O₄, carbon,

and Fe₃O₄/C (0.2 g/L) under visible light irradiation ($\lambda \ge 420$ nm), respectively.

Figure S6. Kinetic fit of the photoreduction of Cr (VI) (20 mg/L) by g-C₃N₄, C/g-C₃N₄, and Fe₃O₄/C/g-C₃N₄ (0.2 g/L), respectively, to the first-order kinetic model under visible light irradiation ($\lambda \ge 420$ nm).

Figure S7. Kinetic fit of photodegradation of dimethoate (10 mg/L) by g-C₃N₄, C/g-C₃N₄, and Fe₃O₄/C/g-C₃N₄ (0.2 g/L) to first-order kinetic model under visible light irradiation ($\lambda \ge 420$ nm), respectively.

Figure S8. Absorption and photodegradation of dimethoate (10 mg/L) by Fe_3O_4 ,

carbon, and Fe₃O₄/C (0.2 g/L) under visible light irradiation ($\lambda \ge 420$ nm), respectively.

Figure S9. The magnetic separation for possessing the Fe₃O₄ component.

Figure S10. Kinetic fit of the photoreduction of Cr(VI) (20 mg/L) by C/g-C₃N₄ or $Fe_3O_4/C/g-C_3N_4$ (0.2 g/L) to first-order kinetic mode under the visible light irradiation ($\lambda \ge 420$ nm) with the continual N₂ purging into the solution.

Figure. S11 Kinetic constants for photocatalytic degradation of dimethoate (10 mg/L) over $Fe_3O_4/C/g-C_3N_4$ (0.2 g/L) with N₂ continually purged and different scavengers (IPA, 0.01ml; TEOA, 0.01ml; SOD, 1mg) added into the 50ml reaction mixture, respectively.