Amide vs. Amine Ligand Paradigm in the Direct Amination of Alcohols with Ru-PNP Complexes

Dennis Pingen,^b Jong-Hoo Choi,^c Henry Allen,^d George Murray,^d Prasad Ganji,^e Piet W. N. M. van Leeuwen,^f Martin H. G. Prechtl,^{c*} Dieter Vogt.^{a*}

^a Prof. Dr. D. Vogt, Lehrstuhl Technische Chemie, Fakultät Bio- und Chemieingenieurwesen, Technische Universität Dortmund, Emil-Figge-Straße 66, D-44227 Dortmund, Germany, E-Mail: dieter.vogt@tu-dortmund.de

^b Dr. D. L. L. Pingen, Chemical Materials Science, Department of Chemistry, University of Konstanz, Universitätsstrasse 10, Konstanz, Germany.

^c Priv.-Doz. Dr. M. H. G. Prechtl. Dr. J.-H. Choi, Department of Chemistry, University of Cologne, Greinstrasse 6, 50939 Cologne, Germany. E-Mail: martin.prechtl@uni-koeln.de

^d H. Allen, G. Murray, EaStCHEM, School of Chemistry, King's Buildings, Joseph Black Building, University of Edinburgh, West Mains Road, Edinburgh EH9 3JJ, Scotland, UK.

^e Dr. P. Ganji, Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007 Tarragona, Spain.

^f Prof. Dr. P. W. N. M. van Leeuwen, Laboratoire de Physique et Chimie de Nano-Objets, INSA, 135 Avenue de Rangueil, F-31077 Toulouse, France.

Supporting Information

GC-Analysis	S2
Catalysis	S2
Mass Spectrometry	S14
Spectroscopy	S15
References	S28

GC-analysis:

GC-method details	
Injection Mode/ ratio:	Split/ 100
Temperature:	270°C
Carrier Gas:	Не
Flow Control Mode:	Velocity
Pressure:	121.0 kPa
Total Flow:	73.6 mL/min
Column Flow:	0.70 mL/min
Liner Velocity:	26.1 cm/sec
Temperature program:	80°C → 199°C @ 8°C/min 199°C → 270°C @50°C/min hold 2 min
Column type:	Ultra-2 serial nr.: US8649351H
Column length:	25 m, 0.33 μ m film thickness, 0.20 mm inner diameter
Column Max Temp.	310°C

Catalysis:

Graph S1: Amination of cyclohexanol employing complex 13 followed by the addition of cyclohexanone. Conditions: 0.04 mmol complex 13, 5 mmol cyclohexanol, 0.5 mmol cyclohexanone (after 22.5 h), 15 mL t-amylalcohol, 2.5 mL NH₃, 150°C, 22.5 h then cyclohexanone added and another 10 h. \blacksquare = cyclohexanol, \bullet = cyclohexylamine, \square = cyclohexanone.

Graph S2: Amination of cyclohexanol employing complex 15 followed by addition of cyclohexanone. Conditions: 0.04 mmol complex 15, 5 mmol cyclohexanol, 0.5 mmol cyclohexanone (after 22.5 h) 15 mL t-amylalcohol, 2.5 mL NH₃, 150°C, 22.5 h then cyclohexanone added and another 10 h. \blacksquare = cyclohexanol, \bullet = cyclohexylamine, \blacksquare = cyclohexanone, \square = cyclohexylimine, \blacklozenge = dicyclohexylimine, \blacklozenge = dicyclohexylamine.

Graph S3: Amination of cyclohexanol employing complex 13 with additional 1 mol% KO^tBu. Conditions: 0.04 mmol complex 13, 5 mmol cyclohexanol, 0.05 mmol KO^tBu, 15 mL t-amylalcohol, 2.5 mL NH₃, 150°C, 23.5 h. \blacksquare = cyclohexanol, \blacklozenge = cyclohexylamine, \blacksquare = cyclohexylamine, \diamondsuit = dicyclohexylamine, \diamondsuit = dicyclohexylamine,

Graph S4: Amination of cyclohexanol employing complex 15 with additional 1 mol% KO^tBu. Conditions: 0.04 mmol complex 15, 5 mmol cyclohexanol, 0.05 mmol KO^tBu, 15 mL t-amylalcohol, 2.5 mL NH₃, 150°C, 23.5 h. \blacksquare = cyclohexanol, \blacklozenge = cyclohexylamine, \blacksquare = cyclohexylimine, \diamondsuit = dicyclohexylimine, \diamondsuit = dicyclohexylamine.

Graph S5: Amination of benzylalcohol employing complex 13 followed by the addition of benzaldehyde. Conditions: 0.04 mmol complex 13, 5 mmol benzylalcohol, 0.5 mmol benzaldehyde (after 23.5 h) 15 mL t-amylalcohol, 2.5 mL NH₃, 150°C, 23.5 h then benzaldehyde was added and another 23.5 h. \blacksquare = benzylalcohol, \bullet = benzylamine, \square = benzaldehyde, \square = benzylimine, \blacklozenge = dibenzylimine, \blacklozenge = dibenzylimine.

Graph S6: Amination of benzylalcohol employing complex 15 followed by addition of benzaldehyde. Conditions: 0.04 mmol complex 15, 5 mmol benzylalcohol, 0.5 mmol benzaldehyde (after 23.5 h), 15 mL t-amylalcohol, 2.5 mL NH₃, 150°C, 23.5 h then addition of benzaldehyde and another 23.5 h. \blacksquare = benzylalcohol, \bullet = benzylamine, \square = benzaldehyde, \square = benzylimine, \blacklozenge = dibenzylimine, \blacklozenge = dibenzylimine.

For both complex **13** and **15**, no activity could be found employing primary alcohols, even not after the addition of benzaldehyde (Graph S5 and Graph S6).

The reaction was also tested using toluene instead of t-amylalcohol. The results are displayed in Graph S7 and Graph S8.

Graph S7: Amination of cyclohexanol employing complex 13. Conditions: 0.04 mmol complex 13, 5 mmol cyclohexanol, 15 mL toluene, 2.5 mL NH₃, 150°C, 23.5 h. \blacksquare = cyclohexanol, \bullet = cyclohexylamine, \blacksquare = cyclohexanone, \square = cyclohexylimine, \blacklozenge = dicyclohexylimine, \blacklozenge = dicyclohexylimine.

Graph S8: Amination of cyclohexanol employing complex 15 followed by addition of cyclohexanone. Conditions: 0.04 mmol complex 15, 5 mmol cyclohexanol, 0.5 mmol cyclohexanone (after 22.5 h), 15 mL toluene, 2.5 mL NH₃, 150°C, 22.5 h then cyclohexanone was added and another 10 h. \blacksquare = cyclohexanol, \bullet = cyclohexylamine, \blacksquare = cyclohexanone, \blacksquare = cyclohexylimine, \blacklozenge = dicyclohexylimine, \blacklozenge = dicyclohexylamine.

Also changing the solvent did not lead to conversion. It has to be concluded that complex **13** and **15** are inactive in the direct amination of alcohols using ammonia.

Complex 12 and 14

Graph S9: Amination of cyclohexanol employing complex 12 with 10 mol% cyclohexanone. Conditions: 0.04 mmol complex 12, 5 mmol cyclohexanol, 0.5 mmol cyclohexanone, 15 mL t-amylalcohol, 2.5 mL NH₃, 150°C, 23.5 h. ■ =

cyclohexanol, \bullet = cyclohexylamine, \Box = cyclohexanone, \Box = cyclohexylimine, \blacklozenge = dicyclohexylimine, \blacklozenge = dicyclohexylamine.

Graph S10: Amination of cyclohexanol employing complex 14 with 10 mol% cyclohexanone. Conditions: 0.04 mmol complex 14, 5 mmol cyclohexanol, 0.5 mmol cyclohexanone, 15 mL t-amylalcohol, 2.5 mL NH₃, 150°C, 23.5 h. \blacksquare = cyclohexanol, \bullet = cyclohexylamine, \blacksquare = cyclohexanone, \square = cyclohexylimine, \blacklozenge = dicyclohexylimine, \blacklozenge = dicyclohexylimine, \blacklozenge = dicyclohexylamine.

Graph S11: Amination of cyclohexanol employing complex 14 followed by addition of cyclohexanone. Conditions: 0.04 mmol complex 14, 5 mmol cyclohexanol, 0.5 mmol cyclohexanone (after 23.5 h), 15 mL t-amylalcohol, 2.5 mL NH₃, 150°C, 23.5 h then cyclohexanone added and another 23.5 h. \blacksquare = cyclohexanol, \bullet = cyclohexylamine, \blacksquare = cyclohexanone, \square = cyclohexylimine, \blacklozenge = dicyclohexylimine, \blacklozenge = dicyclohexylimine.

Graph S12: Amination of cyclohexanol employing complex 12 with 10 mol% benzaldehyde. Conditions: 0.04 mmol complex 12, 5 mmol cyclohexanol, 0.5 mmol benzaldehyde, 15 mL t-amylalcohol, 2.5 mL NH₃, 150°C, 51 h. \blacksquare = cyclohexanol, \bullet = cyclohexylamine, \blacksquare = cyclohexanone, \square = cyclohexylimine, \blacklozenge = dicyclohexylimine, \diamondsuit = dicyclohexylamine, \diamondsuit = benzylalcohol, \star = benzylalcoh

Graph S13: Amination of cyclohexanol employing complex 14 with 10 mol% benzaldehyde. Conditions: 0.04 mmol complex 14, 5 mmol cyclohexanol, 0.5 mmol benzaldehyde, 15 mL t-amylalcohol, 2.5 mL NH₃, 150°C, 52 h. \blacksquare = cyclohexanol, \bullet = cyclohexylamine, \blacksquare = cyclohexanone, \square = cyclohexylimine, \blacklozenge = dicyclohexylimine, \blacklozenge = dicyclohexylimine, \blacklozenge = dicyclohexylamine.

The catalytic reactions employing **12** and **14** were also performed in toluene instead of tamylalcohol.

Graph S14: Amination of cyclohexanol employing complex 12. Conditions: 0.04 mmol complex 12, 5 mmol cyclohexanol, 15 mL toluene, 2.5 mL NH₃, 150°C, 52 h. \blacksquare = cyclohexanol, \bigcirc = cyclohexylamine, \square = cyclohexylimine, \diamondsuit = dicyclohexylimine, \diamondsuit = dicyclohexylamine.

Graph S15: Amination of cyclohexanol employing complex 14. Conditions: 0.04 mmol complex 14, 5 mmol cyclohexanol, 15 mL toluene, 2.5 mL NH₃, 150°C, 52 h. \blacksquare = cyclohexanol, \bullet = cyclohexylamine, \blacksquare = cyclohexylamine, \blacklozenge = dicyclohexylimine, \blacklozenge = dicyclohexylimine, \blacklozenge = dicyclohexylamine.

In both cases, the activity is lower than in t-amylalcohol (Graph S14 and Graph S15).

Graph S16: Amination of benzylalcohol employing complex 12 followed by addition of benzaldehyde. Conditions: 0.04 mmol complex 12, 5 mmol benzylalcohol, 0.5 mmol benzaldehyde (after 23.5 h), 15 mL t-amylalcohol, 2.5 mL NH₃, 150°C, 23.5 h then addition of benzaldehyde and another 23.5 h. \blacksquare = benzylalcohol, \bullet = benzylamine, \square = benzaldehyde, \square = benzylimine, \blacklozenge = dibenzylimine, \blacklozenge = dibenzylamine.

Graph S17: Amination of benzylalcohol employing complex 14 followed by addition of benzaldehyde. Conditions: 0.04 mmol complex 14, 5 mmol benzylalcohol, 0.5 mmol benzaldehyde (after 23.5 h), 15 mL t-amylalcohol, 2.5 mL NH₃, 150°C, 23.5 h then addition of benzaldehyde and another 23.5 h. \blacksquare = benzylalcohol, \bullet = benzylamine, \square = benzaldehyde, \square = benzylimine, \blacklozenge = dibenzylimine, \blacklozenge = dibenzylamine.

To see if the reaction also works for primary alcohols, benzylalcohol was employed as a substrate under these conditions (Graph S16 and Graph S17).

As the NH_3 amount was shown to influence the performance of the catalyst before, reactions were performed in which the amount of NH_3 was varied from 2.5 mL to 7.5 mL

(Graph S18 and Graph S19). This was done for both complexes **12** and **14**. This was not done for complexes **13** and **15** as these did not show any conversion under any of the previously tested conditions.

Graph S18: Amination of cyclohexanol employing complex 12 with different amounts of NH₃. Conditions: 0.04 mmol complex 12, 5 mmol cyclohexanol, 15 mL t-amylalcohol, NH₃, 150°C, 51 h. \Box = 2.5 mL NH₃, \blacksquare = 5 mL NH₃, \bullet = 7.5 mL NH₃, black = cyclohexanol, red = cyclohexylamine, blue = cyclohexanone.

Graph S19: Amination of cyclohexanol employing complex 14 with different amounts of NH₃. Conditions: 0.04 mmol complex 14, 5 mmol cyclohexanol, 15 mL t-amylalcohol, NH₃, 150°C, 52 h. \Box = 2.5 mL NH₃, \blacksquare = 5 mL NH₃, \blacklozenge = 7.5 mL NH₃, black = cyclohexanol, red = cyclohexylamine, blue = cyclohexanone.

Other Complexes

Graph S20: Amination of cyclohexanol using AcridanPhos (10). Conditions: 5 mmol cyclohexanol, 1 mol% RuHCl(CO)(PPh₃)₃, 1 mol% Acridanphos (10), 13.3 mL t-amylalcohol, 2.5 mL NH₃ (97.5 mmol), 46h, 150°C (■) and 170°C (●), black = cyclohexanol, red = cyclohexylamine, blue = cyclohexanone.

Graph S21: Amination of benzylalcohol using complex 2 with and without additional 10 mol% benzaldehyde. Conditions: 5 mmol benzylalcohol, 1 mol% complex 2, 15 mL toluene, 2.5 mL NH3, 150°C, 8 h. \blacksquare = no added benzaldehyde, \bullet = with 10 mol% benzaldehyde, black = benzylalcohol, red = benzylamine, blue = benzaldehyde, green = dibenzylimine.

Graph S22: Amination of cyclohexanol employing complex 18 in the presence of KO^tBu and benzaldehyde. Conditions: 0.04 mmol complex 18, 5 mmol cyclohexanol, 0.5 mmol KO^tBu, 0.5 mmol benzaldehyde, 15 mL t-amylalcohol, 2.5 mL NH₃, 150°C, 52 h. \blacksquare = cyclohexanol, \blacklozenge = cyclohexylamine, \blacklozenge = cyclohexylamine, \diamondsuit = dicyclohexylimine, \diamondsuit = benzylcyclohexylimine, \oiint = dibenzylamine.

The activity is still very good, though slightly less than without benzaldehyde. It can be concluded that in this case, only the base has a positive, activating effect.

Graph S23: Amination of cyclohexanol employing complex 18 followed by addition of cyclohexanone. Conditions: 0.04 mmol complex 18, 5 mmol cyclohexanol, 0.5 mmol cyclohexanone (after 22.5 h), 15 mL t-amylalcohol, 2.5 mL NH₃, 150°C, 22.5 h then cyclohexanone added and another 23.5 h. \blacksquare = cyclohexanol, \bullet = cyclohexylamine, \blacksquare = cyclohexanone, \square = cyclohexylimine, \blacklozenge = dicyclohexylimine, \blacklozenge = dicyclohexylimine.

Graph S24: Amination of 1-hexanol employing complex 18 followed by addition of KO^tBu. Conditions: 0.04 mmol complex 18, 5 mmol 1-hexanol, 0.5 mmol KO^tBu (after 25 h), 15 mL t-amylalcohol, 2.5 mL NH₃, 150°C, 25 h then KO^tBu added and another 52 h. \blacksquare = 1-hexanol, \bullet = 1-hexylamine, \blacksquare = 1-hexanol, \square = 1-hexylimine, \blacklozenge = dihexylimine, \diamondsuit = dihexylimine.

Mass Spectrometry

Figure S1: LIFDI-MS (Argon collided) of complex [RuCO(C₅H₁₀)(Me-PNP)] 16 in toluene at a retention time of 4.25 min.

Figure S2: LIFDI-MS/MS of [RuCO(C_5H_{10})(Me-PNP)] (16) at a retention time of 2.90 min (black, 569 – 579) compared to simulated isotope pattern of [RuCO(C_5H_{10})(Me-PNP)] 575 (red, 569 – 579).

Figure S3: Reaction of ligand 8 with RuHCl(CO)(PPh₃)₃. ¹H NMR (400 MHz, 298 K, toluene-d⁸): Only ligand signylas, but no hydride signals; indication of amide bond formation with elimination of H₂ (no signal for this observed).

Figure S4: Reaction of ligand 8 with RuHCl(CO)(PPh₃)₃. ¹H NMR (400 MHz, 298 K, toluene-d⁸): no signals; indication of amide bond formation with elimination of H₂. Specifically detail of the hydride region.

Spectroscopy:

Figure S5: Reaction of ligand 8 with RuHCl(CO)(PPh₃)₃. ${}^{31}P{}^{1}H$ NMR (162 MHz, 298 K, toluene-d⁸): 25.7 (PPh₃, RuHCl(CO)(PPh₃)₃), -5 (free PPh₃)₃), -18.4 (free Nixantphos).

The reactions that occur between the ligands **8** and **9** and the precursor are depicted in Scheme S1.

Scheme S1: Coordination of Nixantphos (8) via N under liberation of H_2 and coordination of BnNixantphos (9) to RuHCl(CO)(PPh₃)₃.

Figure S6: ¹H NMR (500 MHz, 298K, CDCl₃) spectrum of 4,5-Bis(diphenylphosphino)-3,6,9,9-tetramethyl-9,10dihydroacridine (Acridanphos, 10)

Figure S7: ³¹P{¹H} NMR (202 MHz, 298K, CDCl₃) spectrum of 4,5-Bis(diphenylphosphino)-3,6,9,9-tetramethyl-9,10dihydroacridine (Acridanphos, 10)

Figure S8: ¹³C NMR (126 MHz, 298K, CDCl₃) spectrum of 4,5-Bis(diphenylphosphino)-3,6,9,9-tetramethyl-9,10-dihydroacridine (Acridanphos, 10).

Figure S9: Hydride region of RuHCl(CO)(PPh₃)₃/Acridanphos (10). ¹H NMR (400 MHz, 298K, toluene-d⁸): -6.71 (dt, ²J_{HP} = 103.6, 24.4).

Figure S10: ³¹P{¹H} region of RuHCl(CO)(PPh₃)₃/Acridanphos (10). ³¹P NMR (162 MHz, 298K, toluene-d⁸): 34.1 (d, ²J_{PP} = 23 Hz), 31.4 (t, ²J_{PP} = 23 Hz).

Figure S11: ³¹P NMR (300 MHz, 298K, toluene-d⁸) spectrum. Reaction of complex 12 with cyclohexanone at 80°C for 2 hours forming complex 16.

Figure S12: ³¹P{¹H} NMR (121.5 MHz, 298K, toluene-d⁸) spectrum. Reaction of complex 12 with cyclohexanone at 80°C followed in time. Complex 16 is formed in the first few hours, after which it degrades further.

Figure S13: ¹³C NMR (75 MHz, 298K, toluene-d⁸) spectrum. Reaction of complex 12 with cyclohexanone at 80°C for 2 hours forming complex 16. The CO signal is observed at 208 ppm, note that the CO of cyclohexanone has a shift of 211.8 ppm.

Figure S14: ¹³C NMR (75 MHz, 298K, toluene-d⁸) spectrum. Reaction of complex 12 with cyclohexanone at 80°C followed in time. Complex 16 is formed in the first few hours, after which it degrades further.

Figure S15: ¹H NMR (300 MHz, 298K, toluene-d⁸) spectrum. Reaction of complex 12 with cyclohexanone at 80°C for 2 hours, resulting in the formation of complex 16. The signal around 0.3 ppm might indicate Ru-alkyl species.

Figure S16: ¹H NMR (300 MHz, 298K, toluene-d⁸) spectrum, hydride region. Reaction of complex 12 with cyclohexanone at 80°C for 2 hours, resulting in the formation of complex 16.

Figure S17: ¹H NMR (300 MHz, 298K, toluene-d⁸) spectrum. Reaction of complex 12 with cyclohexanone at 80°C followed in time. Complex 16 is formed in the first few hours, after which it degrades further.

Figure S18: ¹H NMR (300 MHz, 298K, toluene-d⁸) spectrum of the hydride region. Reaction of complex 12 with cyclohexanone at 80°C followed in time. Complex 16 is formed in the first few hours, after which it degrades further.

Figure S19: IR spectrum of compound 16. A strong signal is observed at 1878 cm⁻¹. This is a typical region for a CO vibration. The signals between 2000 and 2200 cm⁻¹ also indicate a reaction, though it is not clear yet where these vibrations come from exactly. An increase of peaks in the 1000-1200 cm⁻¹ region might indicate formation of different M-CH_n bonds. The actual M-C vibrations show up in the 450-600 cm⁻¹ region.^[1]

Figure S20: ¹H NMR (300 MHz, 298K, CDCl₃) spectrum of complex 18.

Figure S22: ³¹P{¹H} NMR (121 MHz, 298K, CDCl₃) spectrum of complex 18.

Figure S23: ¹³C_{apt} NMR (75 MHz, 298K, CDCl₃) spectrum of complex 18, CH and CH₃ groups are displayed as positive signals, C and CH₂ as negative signals.

Figure S24: ¹³C_{apt} NMR (75 MHz, 298K, CDCl₃) spectrum of complex 18, range over 240 ppm, CH and CH₃ groups are displayed as negative signals, C and CH₂ as positive signals.

Figure S25: IR spectrum of complex 18. The carbonyl signal is clearly seen at around 1900 cm⁻¹.

References

1 J. Chatt, R. G. Hayter, J. Chem. Soc. (Resumed) 1963, 6017-6027.