Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2018

Isobutane aromatization over complete Lewis-acid Zn/HZSM-5 zeolite catalyst: performance and mechanism

Jiaxu Liu^a, Ning He^a, Wei Zhou^a, Long Lin^a, Guodong Liu^a, Chunyan Liu^a, Jilei Wang^a, Qin Xin^b, Guang Xiong^a, Hongchen Guo^a*

^a State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian

University of Technology, Dalian 116024, China

^b State Key Laboratory for Catalysis, Dalian Institute of Chemical Physics, Chinese Academy

of Sciences, Dalian 116023, China

Content

Table S1	
Figure S1	S2
Figure S2	S3
Figure S3	S3
Figure S4	S4
Figure S5	
Figure S6	S6-7
Scheme S1	
Scheme S2	
Scheme S3	S10
Figure S7	S11-13

n	1	3	5	6	7
ΔG (kcal/mol)	2.99	2.85	31.52	-303.28	-305.08

Table S1 DFT calculation of ZnO structure inside of zeolite channel

The thermodynamic stability of ZnO cluster inside of channel (873K)

 $Zeolite@(ZnO)_n \longrightarrow Zeolite + (ZnO)_n$

Based on the calculation, it was found that if n is not bigger than 5, the Gibbs free energies were positive, while n is bigger than 5, the Gibbs free energies were negative. It dictates that in the intersection of ZSM5, $(ZnO)_5$ cluster is the biggest and stable cluster.

Figure S1 H₂-TPR profiles of ZnO reference and $Zn_{8.47}$ /HZSM-5 catalyst pretreated by H₂ flow at the speed of 3ml/min for 6 hours at different temperatures.

Figure S2 Reaction stability of isobutane conversion over HZSM-5 and Zn/HZSM-5 catalysts. (a) 400°C, (b) 450°C, (c) 500°C, (d) 560°C. Reaction conditions: P=0.1 MPa, WHSV=0.75 h⁻¹.

Figure S3 Reaction stability of BTX selectivity over HZSM-5 and Zn/HZSM-5 catalysts. (a) 400°C (b) 450°C (c) 500°C (d) 560°C. Reaction conditions: P=0.1 MPa, WHSV=0.75 h⁻¹.

Figure S4 DB-FTIR profiles of isobutane aromatization on nano-sized HZSM-5, $Zn_{2.34}$ /HZSM-5 and $Zn_{8.47}$ /HZSM-5 catalysts at different temperatures 150-450°C and 101.33 kPa obtained using a DB-FTIR spectrometer in a flowing mixture of isobutane and nitrogen gas (2 % isobutane - 98 % nitrogen), GHSV=1080 h⁻¹.

Figure S5 Three-dimensional DB-FTIR profiles of propene aromatization on (a) nano-sized HZSM-5, (b) $Zn_{2.34}/HZSM$ -5 and (c) $Zn_{8.47}/HZSM$ -5 catalysts at 250°C and 101.33 kPa obtained using a DB-FTIR spectrometer in a flowing mixture of propene and nitrogen gas (6 % propene - 94 % nitrogen), GHSV=1080 h⁻¹.

Figure S6 Geometric structures of reaction intermediates and transition states in primary activation of isobutane (the unit for bond length is Å)

Path 1 and 2: propylene oligomerization over [ZnOH]⁺ according to carbocation mechanism; Path 3: propylene oligomerization over [Zn-(C₃H₅)⁻]⁺ according to carbonion mechanism

Scheme S2 The cyclization of propylene dimmer (formed by Path1) over (Zn-O-Zn)²⁺ active center with the

participation of adjacent [ZnOH]+

Scheme S3 The cyclization of propylene dimer (formed by Path 3) over $(Zn-O-Zn)^{2+}$ active center with the participation of adjacent $[ZnOH]^+$

Figure S7 Geometric structures of reaction intermediates and transition states of propylene oligomerization and cyclization (the unit for bond length is Å)