Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2018

Supporting information

Facile hydrogenation of *N*-heteroarenes by magnetic nanoparticles supported sub-nanometric Rh catalysts in aqueous medium

Content	Page number					
Table 1. Structure and microstructural parameters obtained by Rietveld refinements	2					
Figure S1. Identification of Rh by STEM	3					
Figure S2. (a) TEM image and b) STEM image of the Rh@Fe ₃ O ₄ after 16^{th}	4					
use of catalyst. The red circles in (b) represents the Rh nanoparticles in it.						
Figure S3. ¹ H NMR of Py-THQ obtained from the Quinoline	5					
hydrogenation in water at 80 °C using tetrahydroxydiboron (THDB)						
Figure S4. ¹³ C NMR of Py-THQ obtained from the Quinoline	6					
hydrogenation in water at 80 °C using tetrahydroxydiboron (THDB)						
Figure S5. ¹ H NMR of Piperidine obtained from the pyridine	7					
hydrogenation under molecular hydrogen pressure.						
Figure S6. ¹³ C NMR of Piperidine obtained from the pyridine	8					
hydrogenation under molecular hydrogen pressure.						
Figure S7. ¹³ C NMR of piperazine obtained from the pyrazine	9					
hydrogenation under molecular hydrogen pressure.						
Figure S8. ¹ H NMR of Py-THQ obtained from the Quinoline	10					
hydrogenation in D ₂ O at 80 °C using tetrahydroxydiboron (THDB).						
Figure S9. ¹³ C NMR of Py-THQ obtained from the Quinoline	11					
hydrogenation in D ₂ O at 80 °C using tetrahydroxydiboron (THDB).						
Figures S10-S15. GC and GC spectra of related compounds	12-17					

Material	Phase (%)	Crystallite size (nm)	Microstrain (%)	Space group	Lattice parameter (a=b=c) (Å)	GoF
Fe ₃ O ₄	100	8.24	0.68	<i>Fd-3m</i> (227)	8.349	1.13
Rh@Fe ₃ O ₄	100	8.40	0.54	Fd-3m (227)	8.362	1.08

 Table 1. Structure and microstructural parameters obtained by Rietveld refinements.

Figure S1. Identification of Rh by STEM

Figure S2. (a) TEM image and b) STEM image of the Rh@Fe₃O₄ after 16^{th} use of catalyst. The red circles in (b) represents the Rh nanoparticles in it.

Figure S3. XPS spectrum of Rh@Fe₃O₄

Figure S4. ¹H NMR of Py-THQ obtained from the Quinoline hydrogenation in water at 80 °C using tetrahydroxydiboron (THDB)

Figure S5. ¹³C NMR of Py-THQ obtained from the Quinoline hydrogenation in water at 80 °C using tetrahydroxydiboron (THDB)

Figure S6. ¹H NMR of Piperidine obtained from the pyridine hydrogenation under molecular hydrogen pressure.

Figure S7. ¹³C NMR of Piperidine obtained from the pyridine hydrogenation under molecular hydrogen pressure.

Figure S8. ¹³C NMR of piperazine obtained from the pyrazine hydrogenation under molecular hydrogen pressure.

Figure S9. ¹H NMR of Py-THQ obtained from the Quinoline hydrogenation in D_2O at 80 °C using tetrahydroxydiboron (THDB).

Figure S10. ¹³C NMR of Py-THQ obtained from the Quinoline hydrogenation in D_2O at 80 °C using tetrahydroxydiboron (THDB).

Figure S11. GC and GCMS spectrum of Quinoline hydrogenation under molecular hydrogen pressure in water at 50 °C.

Figure S12. GC and GCMS spectrum of indole hydrogenation under molecular hydrogen pressure in THF at 140 $^{\circ}$ C under 40 bar H₂ pressure.

Figure S13. GC and GCMS spectrum of benzene hydrogenation under molecular hydrogen pressure at 100 °C without solvent.

Figure S14. GC and GCMS spectrum of p-xylene hydrogenation under molecular hydrogen pressure without solvent at 130 $^{\circ}$ C under 40 bar H₂ pressure.

Figure S15. GC and GCMS spectrum of toluene hydrogenation under molecular hydrogen pressure without solvent at 130 $^{\circ}$ C under 40 bar H₂ pressure.

Figure S16. GCMS spectra of reduced product a) py-THQ and b) deuterated py-THQ in presence of tetrahydroxydiboron in H_2O and D_2O respectively.