Supporting Information

Solvent effects on heterogeneous catalysis in selective hydrogenation of cinnamaldehyde over a conventional Pd/C catalyst

Yan Li, Haiyang Cheng*, Weiwei Lin, Chao Zhang, Qifan Wu, Fengyu Zhao, Masahiko Arai*

No.	Solvents	π* (-) ^a	α (-) ^b	β (-) ^c	$X_{H_2} \ge 10^4 (-)^d$
1	1-Butanol	0.47	0.79	0.88	2.63 ^[2]
2	2-Propanol	0.48	0.76	0.95	4.61 ^[2]
3	<i>N</i> , <i>N</i> ² -Dimethylformamide	0.88	0	0.69	1.47 ^[2]
4	Diethyl ether	0.27	0	0.47	3.46 ^[2]
5	Triethylamine	0.14	0	0.71	1.45°
6	Tetrahydrofuran	0.58	0	0.55	2.74 ^[3]
7	Furan		0	0.14	2.79 ^e
8	4-Methylpyridine	0.84	0	0.67	1.25 ^e
9	Pyridine	0.87	0	0.64	1.62 ^[4]
10	Toluene	0.54	0	0.11	3.15 ^[2]
11	<i>n</i> -Hexane	0.04	0	0	6.63 ^[2]
12	Benzene	0.59	0	0.1	2.76 ^[4]

Table S1. Solvatochromic parameters and H₂ solubility of various solvents.

^a Polarity/polarizability index according to Ref. [1].

^b Hydrogen-bond-donation ability according to Ref. [1].

^c Hydrogen-bond-acceptance ability according to Ref. [1].

^d H₂ solubility in solvent mole fraction at 298 K and 1 atm according to Ref. [2-4].

^e The value was measured according to references [5, 6]. In a typical experiment for the measurement of solubility of H_2 , a known volume of solvent was introduced into the autoclave and heated to 298 K. After the thermal equilibrium was attained, the

reactor was flushed with H₂ and pressurized to 1 MPa. The solvent then was stirred for about 20 min to equilibrate the liquid phase with H₂. The change in the pressure in the autoclave was recorded till it became unchanged. The solubility was calculated in mole fraction as $\chi_A = (P_i - P_A) V_g / RTV_L \rho_s$, where χ_A represents the mole fraction of H₂ in the liquid phase, P_i and P_A are the initial and final pressure readings in the autoclave, V_g and V_L are the volumes of the gas and liquid phases, respectively, R is the gas constant, T is the temperature, and ρ_s is the molar density of the liquid.

Figure S1. Plot of the total conversion observed in CAL hydrogenation over 5% Pd/C vs. (a) the mole fraction of H_2 in solvents, (b) the α and (c) the β value of the solvents (Table S1). Numbers given correspond to the different solvents in Figure 1(a).

Figure S2. Conversion and selectivity obtained in pyridine over Pd/C as a function of reaction time. Reaction conditions: CAL, 5 mmol; 5% Pd/C, 5 mg; pyridine, 5 mL; H₂, 4 MPa; 80 °C.

Figure S3. ATR-FTIR spectra of CAL in different solvents measured at 50 °C. CAL, 5 mmol; solvent, 5 mL. (a) protic solvents, (b) aprotic polar solvents, (c) aprotic apolar solvents.

Figure S4. Plot of total conversion in CAL hydrogenation (Fig. 1(a)) vs. the extent of blue-shift of v(C=O) absorption band in various solvents (Fig. S3⁺). Conditions: CAL 5 mmol, solvent 5 mL, 50 °C. For solvent abbreviations, see Fig. 1's caption.

References

- [1] Y. Marcus, Chem. Soc. Rev. 22 (1993) 409-416.
- [2] H. Yoshida, Y. Onodera, S. Fujita, H. Kawamori, M. Arai, Green Chem., 17 (2015) 1877-1883.
- [3] E. Brunner, J. Chem. Eng. Date, 30 (1985) 269-273.
- [4] C.L. Young, Hydrogen and deuterium, Solubility Data Series, Pergamon Press,

Oxford, 1981.

[5] R.M.D. Purwanto, R.V. Chaudhari, H. Delmas, J. Chem. Eng. Data, 41 (1996) 1414-1417.

[6] J. Tan, J. Cui, T. Deng, X. Cui, G. Ding, Y. Zhu, Y. Li, ChemCatChem, 7 (2015) 508-512.