Supplementary Material

Catalytic removal of 1,2-dichloroethane over LaSrMnCoO₆/H-ZSM-5 composite: Insights into synergistic effect and pollutant destruction mechanism

Mingjiao Tian¹, Mudi Ma¹, Bitao Xu¹, Changwei Chen¹, Chi He^{1,2,*}, Zhengping Hao³, Reem Albilali⁴

¹Department of Environmental Science and Engineering, State Key Laboratory of Multiphase Flow in Power Engineering, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, P.R. China

²Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, UK

³National Engineering Laboratory for VOCs Pollution Control Material & Technology, University of Chinese Academy of Sciences, Beijing 101408, P.R. China

⁴Department of Chemistry, College of Science, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia

*To whom correspondence should be addressed:

Tel./Fax: +86 29 82663857; E-mail: chi he@xjtu.edu.cn

Table S1 Physicochemical properties and catalytic performance of synthesized catalysts

Samples	$S_{\rm BET}^{a} ({\rm m}^2/{\rm g})$	$D_{\rm v}^{\rm b} ({\rm cm}^3/{\rm g})$	$D_{\rm p}^{\rm c}({\rm nm})$	$T_{50}^{\mathrm{d}}(^{\circ}\mathrm{C})$	<i>T</i> ₉₀ ^d (°C)	S _{CO2} f (%)	S _{CO} f (%)	$S_{ m HCl}$ f (%)	S _{Cl2} f (%)	C _B g (%)
La ₂ MnCoO ₆	9.97	0.19	83.2	435	528	79.2	21.0	29.4	67.3	100.2
La _{1.5} Sr _{0.5} MnCoO ₆	6.80	0.12	53.8	449	535	66.1	32.4	32.2	66.7	98.5
LaSrMnCoO ₆	11.00	0.12	53.6	415	509	89.2	11.7	40.0	60.3	100.9
La _{0.5} Sr _{1.5} MnCoO ₆	8.06	0.10	36.2	466	540	68.2	32.0	30.3	69.1	100.2

^a BET surface area calculated at $P/P_0 = 0.05$ -0.25; ^b Total pore volume estimated at $P/P_0 = 0.99$; ^c BJH pore diameter calculated from the absorption branch; ^d Temperatures at which 50% and 90% conversion of 1,2-DCE; ^f Selectivity of CO₂, CO, HCl, and Cl₂ over synthesized materials at 580 °C; ^g Carbon balance of prepared materials at 580 °C.

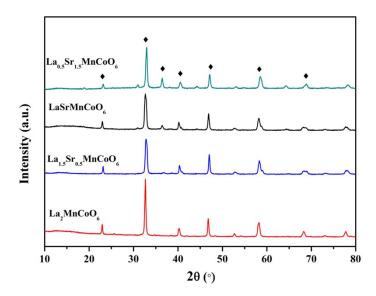


Fig. S1 XRD of the synthesized c materials.

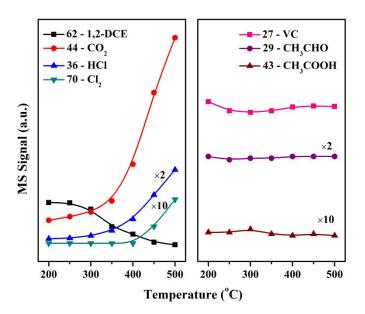


Fig. S2 MS signal of 0.1LSMC/Z sample.

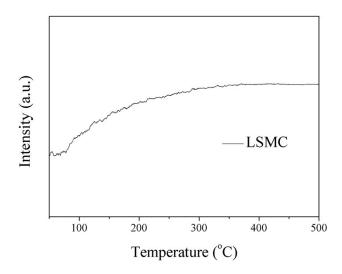


Fig. S3 1,2-dichloroethane adsorption capacity of LSMC.