Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2018

Supplementary Information for:

Integrating Reduced Graphene Oxide with Microwave-Subcritical Water for Cellulose Depolymerization

Elaine G. Mission¹, Armando T. Quitain², Yudai Hirano¹, Mitsuru Sasaki³, Maria Jose Cocero⁵, Tetsuya Kida²

¹Graduate School of Science and Technology
 ²Faculty of Advanced Science and Technology
 ³College of Cross-Cultural and Multidisciplinary Studies
 ⁴Institute of Pulsed Power Science
 Kumamoto University, Kumamoto 8608555, Japan
 ⁵Department of Chemical Engineering and Environmental Technology, University of Valladolid, Valladolid, Spain

*E-mail: quitain@kumamoto-u.ac.jp, tetsuya@kumamoto-u.ac.jp

Table of Contents:

- 1. C1s and O1s XPS spectra of graphene oxide (GO), rGO1 (microwave-hydrothermal reduced GO) and rGO2 (thermally annealed GO)
- 2. Combustion Elemental Analysis for GO, rGO1 and rGO2
- 3. Representative high performance liquid chromatography (HPLC) spectra for the combinations used in this study.
- 4. Product distribution table in wt% yields
- 5. Glucose production from cellulose by various carbon materials
- 6. Spent rGO2 characterization (FTIR, XRD and XPS)
- 7. Particle size analysis of oligosaccharides

1. C1s and O1s XPS spectra of graphene oxide (GO), rGO1 (microwave-hydrothermal reduced GO) and rGO2 (thermally annealed GO)

Fig. S1. X-ray photoelectron spectroscopy for graphene oxide (GO), microwave reduced graphene oxide (rGO1) and thermally annealed graphene oxide (rGO2).

	C%	H%	N%	S%	C/O
GO	44.1	2.06	0.43	1.96	0.86
rGO1	75.34	0.51	0.33	0	3.16
rGO2	71.78	0.50	0.48	0	2.64

2. Table S1. Combustion Elemental Analysis data

3. Representative HPLC spectra

Fig. S2. Representative high performance liquid chromatography (HPLC) spectra for the combinations used in this study.

4. Table S2: Product distribution table in wt% yields

$\begin{array}{c c c c c c c c c c c c c c c c c c c $					Yield (wt%)				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Entry	Carbon catalyst	Heating type	Temperature (K)	Oligo saccharides	Glucose	5-HMF		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1		Ch	473	-	0	-		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2		Ch	493	0.8	0.3± 0.1	-		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	3		Ch	513	3	6.75 ± 0.6	4.5		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	4		MW	473	-	0	-		
	5		MW	493	0.2	2.8 ± 0.2	-		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	6		MW	513	0.15	11.5 ± 0.1	8.3		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	7	rGO1	ch	513		38.6 ± 4.3			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	8	rGO1	MW	473	-	6.1	-		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	9	rGO1	MW	493	-	15 ± 4.2	-		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	10	rGO1	MW	513	-	36 ± 4	12.9		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	11	rGO2	ch	513		16			
13GO2MW493- 38 ± 7 4.414GO2MW513- 65.5 ± 3.7 12.815CNTMW473- 0.3 ± 0.1 -16CNTMW403 3.7 3.4 ± 1.4	12	rGO2	MW	473	-	6.5	-		
14 GO2 MW 513 - 65.5 ± 3.7 12.8 15 CNT MW 473 - 0.3 ± 0.1 - 16 CNT MW 403 3.7 3.4 ± 1.4	13	GO2	MW	493	-	38 ± 7	4.4		
15 CNT MW 473 - 0.3 ± 0.1 -	14	GO2	MW	513	-	65.5 ± 3.7	12.8		
16 CNT M/M 403 37 34 ± 14	15	CNT	MW	473	-	0.3 ± 0.1	-		
10 CNT 1/1/10 495 5.7 5.4 ± 1.4 -	16	CNT	MW	493	3.7	3.4 ± 1.4	-		
17 CNT MW 513 1.1 27.4 ± 1.6 12.2	17	CNT	MW	513	1.1	27.4 ± 1.6	12.2		
18 Gr MW 473 - 0.2 ± 0.1 -	18	Gr	MW	473	-	0.2 ± 0.1	-		
19 Gr MW 493 3.6 3.9 ± 1 -	19	Gr	MW	493	3.6	3.9 ± 1	-		
20 Gr MW 513 0.9 12.9 ± 0.2 10.1	20	Gr	MW	513	0.9	12.9 ± 0.2	10.1		

Ch : conventional heating; MW : microwave irradiation; rGO1 : microwave - reduced graphene oxide; rGO2 : thermally annealed reduced graphene oxide; CNT : carbon nanotubes; Gr: graphite Conditions: cellulose 200 mg, rGO 1 and 2 200 mg, 10 ml distilled water, 200 W, holding time 5 min

5. Glucose production from cellulose by various carbon materials

In this summary, only carbon materials which served as main catalyst has been considered. Those carbon materials that acted as support or scaffold has been excluded.

Entry	Catalyst	Substrate	Intensification technique	Reaction temperature	Reaction time	Yield	Reference	
1	Reduced graphene oxide	Microcrystalline cellulose	Microwave irradiation (200 W)	240 ^o C	5 min	66%	This method	
2	Graphene oxide	Microcrystalline cellulose	Microwave irradiation (200 W)	180 ⁰ C	60 min	61%	Mission et al., 2017	
3	Air oxidized cellulose + HCl	Woody biomass (Eucalyptus)	Mix-milling (2h)	Heating 488 K then lowered to 298 K	1 h	78-82%	Kobayashi et al., 2016	
4	Sulfonated Magnetic Carbonaceous acid (Pyrolyzed glucose and magnetic Fe3O4 nanoparticles)	Ball-milled cellulose	Microwave irradiation	190 ^o C	3.5 h	25.3%	Su et al., 2015	
5	Sucralose- derived solid acid catalyst with –Cl and – SO3H functionalities	Microcrystalline cellulose	lonic liquids	120 °C	24 h	55%	Hu et al., 2014	
6	Sulfonated activated carbon	Ball-milled cellulose	-	423 K	24 h	41.4	Onda et al., 2009	
7	Sulfonated Magnetic reduced graphene oxide (Fe3O4- RGO-SO3H)	Microcrystalline cellulose	-	150 ⁰ C	5 h	28%	Yang et al., 2015	
8	Biomass char sulfonic acid (BC-SO3H)	Microcrystalline cellulose	Microwave irradiation (350 W)	90 ⁰ C	1 h	16.7	Wu et al., 2009	
9	Amorphous carbon + SO3H+ COOH + OH	Microcrystalline cellulose	-	373 K	3h	4% + 64% β 1,4 glucan	Suganuma et al	
10	Activated carbon + HCI	Microcrystalline cellulose	Mix milled	453 K	1 h	88%	Kobayashi et al.`	

 Table S3: Summary of glucose production from cellulose by various carbon materials

6. Spent rGO2 characterization

Figure S3. Catalyst reuse scheme

Figure S4. Fourier transform infrared spectra (FTIR, left) and X-ray diffractograms (XRD, right) spectra of rGO2 utilized in several cycles: CYC1 – first cycle, pure fresh rGO2; CYC2 – 50% residue from CYC1 and 50% fresh rGO2; CYC 3 – 50% residue from CYC2 and 50% fresh rGO2

Sample	Eleme Compo (%)	ntal osition	C1s D	econvol	ution					O1s Deconvolution				tion	
Code	С	0	C=C-I	⊣ ^{C=C} sp²	C-H	C-C sp³	C-OH	C-O-C	C=O	0=C-0	п•π*	Quinone	eC=O	0-C-0	C-OH
CYC1	65.9	34.1	-	66.6	-	-	17.1	7.5	-	5.7	3.1	8.8	3.1	64.4	23.7
CYC2	79.1	20.9	-	56.51	-	-	23.41	-	15.68	-	4.40	4.34	1.64	5.11	88.92

Table S4: C1s and O1s positions and intensities obtained by deconvolution

Energy binding (eV)

Energy binding (eV)

Fig. S5. X-ray photoelectron spectroscopy of rGO2 utilized in several cycles: CYC1 – first cycle, pure fresh rGO2; CYC2 – 50% residue from CYC1 and 50% fresh rGO2; CYC 3 - 50% residue from CYC2 and 50% fresh rGO2

7. Particle size analysis of oligosaccharides

In the proposed reaction mechanism, it was suggested that β -glucans or oligosaccharides could be trapped in between the nanopores and nanovoids of the rGO2 which could have facilitated faster hydrolysis reaction. In order to support this suggestion, we have measured the particle size of cellobiose, which is the most detected oligosaccharides or β -glucans, as per HPLC analysis.

We have prepared a solution of cellobiose and measured the particle size using dynamic light scattering technique (DLS; Zetasizer Nano ZS Malvern Instruments, Ltd. UK). A representative histogram distribution of the particle size measurement is shown below (Fig. S5), and we found out that the range of cellobiose particle size is 0.6 to 5560 nm with an average of 56 nm. With nanopore average of about 28 nm, it is possible that cellobiose having particle size at the lower segment of the distribution could be trapped into the nanovoids as suggested.

References:

- 1) Mission, E. G., Quitain, A. T., Sasaki, M., & Kida, T. (2017). Synergizing graphene oxide with microwave irradiation for efficient cellulose depolymerization into glucose. *Green Chemistry*, *19*(16), 3831-3843. doi:10.1039/c7gc01691c
- Kobayashi, H., Kaiki, H., Shrotri, A., Techikawara, K., & Fukuoka, A. (2016). Hydrolysis of woody biomass by a biomass-derived reusable heterogeneous catalyst. *Chemical Science*, 7(1), 692-696. doi:10.1039/c5sc03377b
- Su, T., Fang, Z., Zhang, F., Luo, J., & Li, X. (2015). Hydrolysis of Selected Tropical Plant Wastes Catalyzed by a Magnetic Carbonaceous Acid with Microwave. *Scientific Reports*, *5*(1). doi:10.1038/srep17538
- 4) Hu, S., Smith, T. J., Lou, W., & Zong, M. (2014). Efficient Hydrolysis of Cellulose over a Novel Sucralose-Derived Solid Acid with Cellulose-Binding and Catalytic Sites. *Journal* of Agricultural and Food Chemistry, 62(8), 1905-1911. doi:10.1021/jf405712b
- 5) Onda, A., Ochi, T., & Yanagisawa, K. (2009). Hydrolysis of Cellulose Selectively into Glucose Over Sulfonated Activated-Carbon Catalyst Under Hydrothermal Conditions. *Topics in Catalysis*, *52*(6-7), 801-807. doi:10.1007/s11244-009-9237-x
- 6) Yang, Z., Huang, R., Qi, W., Tong, L., Su, R., & He, Z. (2015). Hydrolysis of cellulose by sulfonated magnetic reduced graphene oxide. *Chemical Engineering Journal*, 280, 90-98. doi:10.1016/j.cej.2015.05.091
- 7) Wu, Y., Fu, Z., Yin, D., Xu, Q., Liu, F., Lu, C., & Mao, L. (2010). Microwave-assisted hydrolysis of crystalline cellulose catalyzed by biomass char sulfonic acids. *Green Chemistry*, 12(4), 696. doi:10.1039/b917807d
- Suganuma, S., Nakajima, K., Kitano, M., Yamaguchi, D., Kato, H., Hayashi, S., & Hara, M. (2008). Hydrolysis of Cellulose by Amorphous Carbon Bearing SO3H, COOH, and OH Groups. *Journal of the American Chemical Society*, *130*(38), 12787-12793. doi:10.1021/ja803983h
- Kobayashi, H., Yabushita, M., Komanoya, T., Hara, K., Fujita, I., & Fukuoka, A. (2013). High-Yielding One-Pot Synthesis of Glucose from Cellulose Using Simple Activated Carbons and Trace Hydrochloric Acid. ACS Catalysis, 3(4), 581-587. doi:10.1021/cs300845f