Supporting Information

2 Ultrafast Approach for the Syntheses of Defective Nanosized

3 Lanthanide Perovskites for Catalytic Toluene Oxidation

4 Xiaole Weng^a, Wang Long Wang^a, Qingjie Meng^a and Zhongbiao Wu^{*a}

5 a Key Laboratory of Environment Remediation and Ecological Health, Ministry of

6 Education, College of Environmental and Resource Sciences, Zhejiang University,

7 Zhejiang Provincial Engineering Research Center of Industrial Boiler & Furnace Flue

8 Gas Pollution Control, 388 Yuhangtang Road, Hangzhou, 310058, P. R. China.

9 Corresponding author: Dr. Zhongbiao Wu, Fax/Tel: 0086571 8795308; E-mail:
10 zbwu@zju.edu.cn.

11 1. Catalyst syntheses

sc-H₂O route: In a typical synthesis (see Fig. S1), metal nitrate solution (with or 12 without H₂O₂) and NaOH were separately pumped into the reactor by using HPLC 13 14 pumps at a range of flow rates including 6 and 7.5 mL.min⁻¹. The two streams were mixed in a stainless steel SwagelokTM 1/8" Tee" piece at room temperature, which 15 was then carried to meet a stream of deionized water that was fed by another HPLC 16 pumps at a certain flow rates (e.g. 25 and 30 mL.min⁻¹), heated beyond the 17 supercritical temperature (at 374 °C) by using an electric furnace and then transported 18 through a stainless steel SwagelokTM 1/16" tube into a confined jet mixer (i.e. reactor, 19 a SwagelokTM 1/4" cross^[1]). An adjustable length band heater set to 550 °C was added 20 to reactor to maintain the reaction temperature. By altering the band heater length and 21 22 flow velocity, the residence time can be tuned in a wide range. The precipitates formed in the confined jet mixer were cooled down to room temperature, passed 23 through a 7 µm filter to remove large aggregates and then collected from the exit of 24

back-pressure regulator (that was used to maintain the system pressure at ca. 23.1 MPa). Solids were collected by centrifuging the slurry (5000 rpm, 5min) and then freeze-dried to obtain products as black colored fluffy powder. The advantage of jet mixer is that it enable the precursors to encounter with a high-speed jet of supercritical water, thus leading to a rapid and momentum-driven mixing for hybrid oxides. Another advantage is that such mixing route will maintain a high temperature for the reactor.

Fig. S1 (a) Schematic representation of the three-pump (P1–P3) continuous hydrothermal flow
synthesis system that was used to prepare nanoparticles catalysts. Key: P = pump, BPR = backpressure regulator, R = reactor, H = heater, T = T junction; (b) Schematic diagram of the confined
jet reactor [Gruar, R. I.; Tighe, C. J.; Darr, J. A. Industrial & Engineering Chemistry Research
2013, 52 (15), 5270-5281].

38

43 Fig. S2 Rietveld refinement data of (a) sc-La MnO_3 ,(b) sc-La $_{0.9}Sr_{0.1}MnO_3$ and (c) sc-

 $44 \quad La_{0.9}Sr_{0.1}Mn_{0.9}Fe_{0.1}O_3\ catalysts.$

47 Fig. S3 (a) Nitrogen adsorption-desorption isotherms and (b) pore-size distributions of

 Table. S1 BET surface areas, pore volume, average pore size of each catalyst.

catalyst	Surface area	Pore volume	Average pore
	/ m²/g	/ cm ³ /g	size / nm
sc-LaMnO ₃	67.86	0.327	11.58
sc-La _{0.9} Sr _{0.1} MnO ₃	52.69	0.254	13.83
sc-La _{0.9} Sr _{0.1} Mn _{0.9} Fe _{0.1} O ₃	28.46	0.123	17.22
(a)	14 12 0 0 0 10 0 0 10 0 0 10 0 0 10 0 0 10 0 0 10 0 0 10 0 0 10 0 0 0 10 0 0 0 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	(b) 10 12 14 16	
Particle size / nm Particle size / nm		size / nm	

52 Fig. S4 Particle size distribution of (a) sc-LaMnO₃, (b) sc-La_{0.9}Sr_{0.1}MnO₃ and (c) sc-

 $La_{0.9}Sr_{0.1}Mn_{0.9}Fe_{0.1}O_3$ catalysts.

Fig. S5 $Fe2p_{3/2}$ spectra of sc-La_{0.9}Sr_{0.1}Mn_{0.9}Fe_{0.1}O₃ catalyst.

~ ~	. 1 .	1	1	1.7.
~ /	catalvete	under a	cimilar	condition
57	Calarysis	unuer a	Similar	Contantion

catalysts	Toluene concentration /	GHSV /	T ₉₀ /	Ref
	ppm	h^{-1} or mL.g ⁻¹ . h^{-1}		
0.5 wt.% Pd/C	1000	30000	361	[2]
1 wt.% Pt/CeO ₂	1000	40000	225	[3]

1 wt.% Pt/Al ₂ O ₃	600	60000	235	[4]
0.71wt.% Au/Fe ₂ O ₃	1000	20000	250	[5]

Fig. S6 (a) the time dependence curves of toluene conversion over sc-La_{0.9}Sr_{0.1}Mn_{0.9}Fe_{0.1}O₃
catalyst and (b) GC-MS analyses of the sc-La_{0.9}Sr_{0.1}Mn_{0.9}Fe_{0.1}O₃ after stability test.

Fig. S7 SEM image of cr-LaMnO₃ sample.

66 **Reference**

- 67 1. R. I. Gruar, C. J. Tighe and J. A. Darr, *Ind. Eng. Chem. Res.*, 2013, **52**, 5270-5281.
- 68 2. S. Morales-Torres, F. J. Maldonado-Hódar, A. F. Pérez-Cadenas and F. Carrasco-Marín, J.
- 69 *Hazard. Mater.*, 2010, **183**, 814-822.
- 70 3. Z. Abdelouahab-Reddam, R. E. Mail, F. Coloma and A. Sepúlveda-Escribano, Appl.
- 71 *Catal., A*, 2015, **494**, 87-94.
- 72 4. A. M. Carrillo and J. G. Carriazo, *Appl. Catal.*, *B*, 2015, **164**, 443-452.
- 73 5. W. Han, J. Deng, S. Xie, H. Yang, H. Dai and C. T. Au, Ind. Eng. Chem. Res., 2014, 53,
- 74 3486-3494.
- 75
- 76