Electronic Supplementary Information (ESI)

Effect of surface acidity of cyano-bridged polynuclear metal complexes on catalytic activity for hydrolysis of organophosphates

Hiroyasu Tabe, Chihiro Terashima and Yusuke Yamada*,

Department of Applied Chemistry and Bioengineering, Graduate School of Engineering, Osaka City

University, Osaka 558-8585, Japan.

* To whom correspondence should be addressed. E-mail: ymd@a-chem.eng.osaka-cu.ac.jp.

Fig. S1 Powder X-ray diffraction patterns of cyano-bridged polynuclear metal complexes. [(a) $[Fe^{III}(H_2O)_{1.5}]_{4/3}[Fe^{II}(CN)_6]$, (b) $[Mn^{II}(H_2O)_2]_{1.5}[Fe^{III}(CN)_6]$, (c) $[Co^{II}(H_2O)_2]_{1.5}[Fe^{III}(CN)_6]$, (d) $[Zn^{II}(H_2O)_2]_{1.5}[Fe^{III}(CN)_6]$, (e) $Ga^{III}[Fe^{III}(CN)_6]$, (f) $[Ga^{III}(H_2O)_{1.5}]_{4/3}[Fe^{II}(CN)_6]$, (g) $Fe^{III}[Co^{III}(CN)_6]$, (h) $Fe^{III}[Ir^{III}(CN)_6]$, (i) $[Fe^{III}(H_2O)_{1.5}]_{4/3}[Ru^{II}(CN)_6]$, (j) $[Fe^{II}(H_2O)_2]_{1.5}[Co^{III}(CN)_6]$, (k) $[Fe^{III}(H_2O)_2]_{1.5}[Ir^{III}(CN)_6]$, (l) $[Fe^{III}(H_2O)_3]_2[Ru^{II}(CN)_6]$ and (m) $Fe^{II}[Pt^{IV}(CN)_6]$]

Fig. S2 IR spectra of cyano-bridged polynuclear metal complexes. [(a) $[Fe^{III}(H_2O)_{1.5}]_{4/3}[Fe^{II}(CN)_6]$, (b) $[Mn^{II}(H_2O)_2]_{1.5}[Fe^{III}(CN)_6]$, (c) $[Co^{II}(H_2O)_2]_{1.5}[Fe^{III}(CN)_6]$, (d) $[Zn^{II}(H_2O)_2]_{1.5}[Fe^{III}(CN)_6]$, (e) $Ga^{III}[Fe^{III}(CN)_6]$, (f) $[Ga^{III}(H_2O)_{1.5}]_{4/3}[Fe^{II}(CN)_6]$ (g) $Fe^{III}[Co^{III}(CN)_6]$, (h) $Fe^{III}[Ir^{III}(CN)_6]$, (i) $[Fe^{III}(H_2O)_{1.5}]_{4/3}[Ru^{II}(CN)_6]$, (j) $[Fe^{III}(H_2O)_2]_{1.5}[Co^{III}(CN)_6]$, (k) $[Fe^{III}(H_2O)_2]_{1.5}[Ir^{III}(CN)_6]$, (l) $[Fe^{III}(H_2O)_3]_2[Ru^{II}(CN)_6]$ and (m) $Fe^{II}[Pt^{IV}(CN)_6]$]

Fig. S3 Thermogravimetric analyses of cyano-bridged polynuclear metal complexes in an air flow. [(a) $[Fe^{III}(H_2O)_{1.5}]_{4/3}[Fe^{II}(CN)_6]$, (b) $[Mn^{II}(H_2O)_2]_{1.5}[Fe^{III}(CN)_6]$, (c) $[Co^{II}(H_2O)_2]_{1.5}[Fe^{III}(CN)_6]$, (d) $[Zn^{II}(H_2O)_2]_{1.5}[Fe^{III}(CN)_6]$, (e) $Ga^{III}[Fe^{III}(CN)_6]$, (f) $[Ga^{III}(H_2O)_{1.5}]_{4/3}[Fe^{II}(CN)_6]$ (g) $Fe^{III}[Co^{III}(CN)_6]$, (h) $Fe^{III}[Ir^{III}(CN)_6]$, (i) $[Fe^{III}(H_2O)_{1.5}]_{4/3}[Ru^{II}(CN)_6]$, (j) $[Fe^{II}(H_2O)_2]_{1.5}[Co^{III}(CN)_6]$, (k) $[Fe^{III}(H_2O)_2]_{1.5}[Ir^{III}(CN)_6]$, (l) $[Fe^{III}(H_2O)_3]_2[Ru^{II}(CN)_6]$ and (m) $Fe^{II}[Pt^{IV}(CN)_6]$]

Fig. S4 Nitrogen adsorption (red)–desorption (black) isotherms at $-196 \,^{\circ}\text{C}$ for cyano-bridged polynuclear metal complexes. [(a) $[\text{Fe}^{III}(\text{H}_2\text{O})_{1.5}]_{4/3}[\text{Fe}^{II}(\text{CN})_6]$, (b) $[\text{Mn}^{II}(\text{H}_2\text{O})_2]_{1.5}[\text{Fe}^{III}(\text{CN})_6]$, (c) $[\text{Co}^{II}(\text{H}_2\text{O})_2]_{1.5}[\text{Fe}^{III}(\text{CN})_6]$, (d) $[\text{Zn}^{II}(\text{H}_2\text{O})_2]_{1.5}[\text{Fe}^{III}(\text{CN})_6]$, (e) $Ga^{III}[\text{Fe}^{III}(\text{CN})_6]$, (f) $[Ga^{III}(\text{H}_2\text{O})_{1.5}]_{4/3}[\text{Fe}^{II}(\text{CN})_6]$, (g) $\text{Fe}^{III}[\text{Co}^{III}(\text{CN})_6]$, (h) $\text{Fe}^{III}[\text{Ir}^{III}(\text{CN})_6]$, (i) $[\text{Fe}^{III}(\text{H}_2\text{O})_{1.5}]_{4/3}[\text{Ru}^{II}(\text{CN})_6]$, (j) $[\text{Fe}^{II}(\text{H}_2\text{O})_2]_{1.5}[\text{Co}^{III}(\text{CN})_6]$, (k) $[\text{Fe}^{II}(\text{H}_2\text{O})_2]_{1.5}[\text{Ir}^{III}(\text{CN})_6]$, (l) $[\text{Fe}^{II}(\text{H}_2\text{O})_3]_2[\text{Ru}^{II}(\text{CN})_6]$ and (m) $\text{Fe}^{II}[\text{Pt}^{IV}(\text{CN})_6]$]

Fig. S5 Time profiles of *p*-nitrophenol (*p*-NP) formation by hydrolysis of *p*-nitrophenyl phosphate (*p*-NPP, 25 mM) in a HEPES buffer (100 mM, pH 8.3, 0.75 mL) containing cyano-bridged polynuclear metal complexes. [(a) $[Mn^{II}(H_2O)_2]_{1.5}[Fe^{III}(CN)_6]$, (b) $[Co^{II}(H_2O)_2]_{1.5}[Fe^{III}(CN)_6]$, (c) $[Zn^{II}(H_2O)_2]_{1.5}[Fe^{III}(CN)_6]$, (d) $Ga^{III}[Fe^{III}(CN)_6]$, (e) $[Ga^{III}(H_2O)_{1.5}]_{4/3}[Fe^{II}(CN)_6]$, (f) $Fe^{III}[Co^{III}(CN)_6]$, (g) $Fe^{III}[Ir^{III}(CN)_6]$, (h) $[Fe^{III}(H_2O)_{1.5}]_{4/3}[Ru^{II}(CN)_6]$, (i) $[Fe^{II}(H_2O)_2]_{1.5}[Co^{III}(CN)_6]$, (j) $[Fe^{II}(H_2O)_2]_{1.5}[Ir^{III}(CN)_6]$, (k) $[Fe^{II}(H_2O)_3]_2[Ru^{II}(CN)_6]$ and (l) $Fe^{II}[Pt^{IV}(CN)_6]$]

Fig. S6 Time profiles of *p*-nitrophenol (*p*-NP) formation by hydrolysis of paraoxon methyl (PO, 25 mM) in a HEPES buffer (100 mM, pH 8.3, 0.75 mL) containing cyano-bridged polynuclear metal complexes. [(a) $[Fe^{III}(H_2O)_{1.5}]_{4/3}[Fe^{II}(CN)_6]$, (b) $Fe^{III}[Co^{III}(CN)_6]$ and (c) in the absence of catalysts]

Fig. S7 Time profiles of *p*-nitrophenol (*p*-NP) formation by hydrolysis of *p*-nitrophenyl phosphate (*p*-NPP, 25 mM) in a HEPES buffer (100 mM, pH 8.3, 0.75 mL) containing $Fe(NO_3)_3$ ([*p*-NPP]/[Fe] = 100).

Fig. S8 Powder X-ray diffraction patterns of $[Fe^{III}(H_2O)_{1.5}]_{4/3}[Fe^{II}(CN)_6]$ (Prussian blue) nanoparticles in (a) cubic shape (PB-cube) and (b) spherical shape (PB-sphere).

Fig. S9 Nitrogen adsorption (red)–desorption (black) isotherms at -196 °C for $[Fe^{III}(H_2O)_{1.5}]_{4/3}[Fe^{II}(CN)_6]$ (Prussian blue) nanoparticles in (a) cubic shape (PB-cube) and (b) spherical shape (PB-sphere).

Fig. S10 Temperature-programmed desorption (TPD) spectra of $[Fe^{III}(H_2O)_{1.5}]_{4/3}[Fe^{II}(CN)_6]$ (58.9 mg, the ramp rate of 10 °C min⁻¹) after pretreatment for removal of physisorbed water for 1 h at temperatures of 80, 100, 150 and 200 °C, adsorption of pyridine (5 kPa, 100 °C for 30 min) and removal of excess pyridine (150 °C, 30 min) with a flow of helium (He, 30 mL min⁻¹). The TPD spectrum without pyridine adsorption was obtained after pretreatment at 150 °C.

Comments: A sharp TPD peak at around 264 °C after pretreatment at 150 °C was assigned to pyridine desorption, because this peak was indistinct for $[Fe^{III}(H_2O)_{1.5}]_{4/3}[Fe^{II}(CN)_6]$ without pyridine adsorption. The second peak at around 300 °C was assigned to loss of CN ligands of $[Fe^{III}(H_2O)_{1.5}]_{4/3}[Fe^{II}(CN)_6]$ as confirmed by the TPD spectrum of $[Fe^{III}(H_2O)_{1.5}]_{4/3}[Fe^{II}(CN)_6]$ without pyridine adsorption. The TPD peak at around 264 °C was not clearly observed for $[Fe^{III}(H_2O)_{1.5}]_{4/3}[Fe^{II}(CN)_6]$ pretreated at 80, 100 and 200 °C. Thus, the appropriate pretreatment temperature is 150 °C.

Fig. S11 (a) Temperature-programmed desorption (TPD) spectra of various weight of $[Fe^{III}(H_2O)_{1.5}]_{4/3}[Fe^{II}(CN)_6]$ (the ramp rate of 10 °C min⁻¹) after pretreatment for removal of physisorbed water (150 °C, 1 h), adsorption of pyridine (5 kPa, 100 °C for 30 min) and removal of excess pyridine (150 °C, 30 min) with a flow of helium (He, 30 mL min⁻¹). (b) Relation of temperature of pyridine-desorption maximum (T_M) to W/F where W and F represent weight of samples and a flow rate of He, respectively.

Comments: The weight of $[Fe^{III}(H_2O)_{1.5}]_{4/3}[Fe^{II}(CN)_6]$ used for the TPD measurements (*W*) was optimized, because the temperature of pyridine-desorption maximum (T_M) depends on *W*/*F*, where *F* is the flow rate of He. Constant T_M can be obtained when *W* is large enough, because readsorption of the desorbed pyridine occurs. Eq.11 can

$$\ln \frac{T_{M}^{2}}{\beta} = \frac{\Delta H}{RT_{M}} + \ln \left[\frac{(1-\theta)^{2} V_{S} \Delta H}{FAR} \right]$$
(11)

be derived under consideration of the balance of pyridine with desorption and readsoprtion, where β , ΔH , R, F, θ , V_s and A stand for ramp rate, heat of desorption of pyridine, the gas constant, gas flow rate, coverage of catalyst surface, catalyst volume and pre-exponential factor, respectively.^{S1} TPD measurements carried out with changing W (6.9–88.0 mg) showed the shift of T_M from 251 to 264 °C (Figure S10a). The plot of T_M vs. W/F suggests that T_M is almost constant when W/F is larger than 2.0 × 10³ (Figure S10b). Thus, the used weight of samples was larger than 60 mg with the flow rate of He of 30 mL min⁻¹ for further analyses.

Reference

S1 M. Nakano, T. Hironaka, S. Fujii and K. Sekizawa, Toyo Soda Kenkyu Hokoku, 1985, 29, 3–11.

Fig. S12 Temperature-programmed desorption (TPD) of pyridine from (a) $[Fe^{III}(H_2O)_{1.5}]_{4/3}[Fe^{II}(CN)_6]$, (b) $Fe^{III}[Co^{III}(CN)_6]$, (c) $[Mn^{II}(H_2O)_2]_{1.5}[Fe^{III}(CN)_6]$, (d) $Ga^{III}[Fe^{III}(CN)_6]$ and (e) $[Fe^{II}(H_2O)_2]_{1.5}[Co^{III}(CN)_6]$. TPD measurements were performed by heating with various ramp rates ranging from 2 to 10 °C min⁻¹ after pretreatment at 150 °C, 1 h, adsorption of pyridine (5 kPa, 100 °C for 30 min) and removal of excess pyridine (150 °C, 30 min) with a flow of helium (30 mL min⁻¹). The TPD spectra without pyridine adsorption was obtained after pretreatment at 150 °C.

Comments: Multiple peaks appeared for (d) $Ga^{III}[Fe^{III}(CN)_6]$ and (e) $[Fe^{II}(H_2O)_2]_{1.5}[Co^{III}(CN)_6]$ without pyridine adsorption. These peaks can be assigned to loss of chemisorbed water molecules and CN ligands, which were also confirmed by TGA (Fig. S3).

Complex	М	Weight ratio	Molar ratio	Weight ratio	Molar ratio
		M/Fe	M/Fe	K/Fe	K/Fe
$[Fe^{III}(H_2O)_{1.5}]_{4/3}[Fe^{II}(CN)_6]$	_	_	-	0.04	0.1
Fe ^{III} [Co ^{III} (CN) ₆]	Co	0.9	0.9	0	0
Fe ^{III} [Ir ^{III} (CN) ₆]	Ir	3.8	1.1	0	0
$[Fe^{III}(H_2O)_{1.5}]_{4/3}[Ru^{II}(CN)_6]$	Ru	1.9	0.8	0.05	0.1
$[Fe^{II}(H_2O)_2]_{1.5}[Co^{III}(CN)_6]$	Co	0.7	0.6	0.02	0.1
$[Fe^{II}(H_2O)_2]_{1.5}[Ir^{III}(CN)_6]$	Ir	2.1	1.4	0.04	0
$[Fe^{II}(H_2O)_3]_2[Ru^{II}(CN)_6]$	Ru	1.0	1.8	0.04	0.1
Fe ^{II} [Pt ^{IV} (CN) ₆]	Pt	3.3	1.4	0	0
$[Mn^{II}(H_2O)_2]_{1.5}[Fe^{III}(CN)_6]$	Mn	1.5	1.5	0.03	0
$[Co^{II}(H_2O)_2]_{1.5}[Fe^{III}(CN)_6]$	Co	1.5	1.4	0.05	0.1
$[Zn^{II}(H_2O)_2]_{1.5}[Fe^{III}(CN)_6]$	Zn	2.4	2.1	0.05	0.1
Ga ^{III} [Fe ^{III} (CN) ₆]	Ga	1.2	0.9	0	0
$[Ga^{III}(H_2O)_{1.5}]_{4/3}[Fe^{II}(CN)_6]$	Ga	1.6	1.3	0	0

Table S1 Weight and molar ratios of iron (Fe), potassium (K) and another metal species (M) in each cyano-bridged polynuclear metal complex determined by X-ray fluorescence measurements

Table S2 Lattice parameters (*a*), CN stretching frequencies (v_{CN}), Brunauer–Emmett–Teller (BET) surface areas (*S*), external surface areas obtained by *t*-Plot (S_{ext}), pore diameters obtained by the Barrett–Joyner–Halenda (BJH) method and the microporous (MP) method and average particle sizes of [Fe^{III}(H₂O)_{1.5}]_{4/3}[Fe^{II}(CN)₆] (Prussian blue) prepared by a conventional method (PB), Prussian blue in cubic shape (PB-cube) and Prussian blue in spherical shape (PB-sphere)

Complex	<i>a</i> / Å	$v_{\rm CN} / {\rm cm}^{-1}$	$S / m^2 g^{-1}$	$S_{\rm ext}$ / m ² g ⁻¹	Pore diameter / nm	Average
						particle size
						/ nm
PB	10.2	2080	384	9	3.5	-
PB-cube	10.3	2080	10	3	0.6	300
PB-sphere	10.2	2086	300	25	0.6	150

Table S3 Summary of temperature of pyridine-desorption maximum ($T_{\rm M}$), heat of pyridine desorption (ΔH) of cyano-bridged polynuclear metal complexes, and initial rate for catalytic hydrolysis of *p*-nitrophenyl phosphate (*p*-NPP) using the complexes

Complex	$T_{\rm M}$ / °C ^a	$\Delta H / \text{kJ mol}^{-1}$	$v_0 \ / \ mol \ L^{-1} \ h^{-1} \ b$
$[Fe^{III}(H_2O)_{1.5}]_{4/3}[Fe^{II}(CN)_6]$	264	152	3.1×10^{-3}
Fe ^{III} [Co ^{III} (CN) ₆]	254	160	5.3×10^{-3}
$[Mn^{II}(H_2O)_2]_{1.5}[Fe^{III}(CN)_6]$	309	222	6.5×10^{-3}
Ga ^{III} [Fe ^{III} (CN) ₆]	402	176	6.1×10^{-3}
[Fe ^{II} (H ₂ O) ₂] _{1.5} [Co ^{III} (CN) ₆]	243	98	$1.0 imes 10^{-3}$

^{*a*}Temperature of pyridine-desorption maximum from each complex with a ramp rate of 10 °C min⁻¹. Each complex was preadsorbed pyridine after pretreatment in a He flow (30 mL min⁻¹) at 150°C. ^{*b*}Initial rates were determined based on the *p*-NPP conversions for 10 min.