Ni-Co-O solid solution dispersed nanocrystalline Co₃O₄ as highly

active catalyst for low-temperature propane combustion

Ting Cai^{a, b}, Jing Yuan^b, Lin Zhang^a, Ling Yang^b, Qin Tong^b, Meiying Ge^b, Bei Xiao^a, Xiaolan Zhang^a, Kunfeng Zhao^{a, b}*, Dannong He^{a, b}*

^a School of Material Science and Engineering, Shanghai Jiao Tong University, No.800 Dongchuan Road, Shanghai 200240, PR China

^b National Engineering Research Center for Nanotechnology, No. 28 East Jiang Chuan Road, Shanghai 200241, PR China

*Corresponding authors: Tel: 86 21 34291286; Fax: 86 21 34291125

E-mail: hdn_nercn@163.com (Dannong He), zhaokunfeng-gl@163.com (Kunfeng Zhao)

Fig. S1. The pore diameter distribution of NiO-Co(x) catalysts.

Fig. S2. XRD patterns of NiO-Co(0.3): Fresh, 10 cycles and long-time test after 30h.

Fig. S3. TEM and HRTEM photos of NiO-Co(0.3): a, b-Fresh, c, d-10 cycles and e, f-long-time test after 30h.

Fig. S4. $\rm H_2\text{-}TPR$ profiles of NiO-Co(0.3): Fresh, 10 cycles and long-time test after 30h.