Supplementary Information

Synthesis of higher alcohols by CO hydrogenation on a Kpromoted Ni–Mo catalyst derived from Ni–Mo phyllosilicate

Fanfan Zhang, Yuyang Li, Shan Gao, Huihuang Fang, Xuelian Liang,* Youzhu Yuan*

State Key Laboratory of Physical Chemistry of Solid Surfaces, National Engineering Laboratory for Green Chemical Productions of Alcohols-Ethers-Esters, *i*ChEM, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.

Table S1

	Relative content (mol%)						
Catalyst	$Ni^0-2p_{3/2} \approx 852.6$	$NiO\text{-}2p_{3/2} \approx 854.4$	NiO(OH)-2p _{3/2} \approx 856.2				
	eV (B. E.)	eV (B. E.)	eV (B. E.)				
K _{0.5} -(Ni ₁ Mo _{0.25})Si-PS	20.8	34.3	44.9				
K _{0.5} Mo _{0.25} /NiSi-PS	30.6	35.9	33.5				
K _{0.5} -(Ni ₁ Mo _{0.25})Si-DP	44.2	30.7	25.1				

XPS profile and relative content (molar fraction) of Niⁿ⁺ species at the surface of reduced catalysts.

Table S2

XPS profile and relative content (molar fraction) of the Moⁿ⁺ species at the surface of reduced catalysts.

Catalyst	B. E. of Mo(3d _{5/2}) (eV)			Relative contents (1			ol%)	
	Mo ⁰	Mo ³⁺	Mo ⁴⁺	Mo ⁶⁺	Mo ⁰	Mo ³⁺	Mo ⁴⁺	Mo ⁶⁺
K _{0.5} -(Ni ₁ Mo _{0.25})-PS	228.2	229.8	230.9	232.2	23.8	32.1	27.9	16.2
K _{0.5} Mo _{0.25} /NiSi-PS	228.6	229.8	230.9	232.8	25.8	15.8	26.7	31.7
K _{0.5} -(Ni ₁ Mo _{0.25})-DP	228.3	229.8	230.9	232.6	52.2	15.2	17.7	14.9

Table S3

Catalytic activity of K_{0.5}-(Ni₁Mo_x)Si-PS for synthesis of HAs from syngas.

Catalyst	X(CO)	Selectivity (%)			Alcohol distribution (%)		STY _{ROH}	
	(%)	HCs	ROH	CO_2	МеОН	C ₂₊ -OH	(mg/(g·h))	
K _{0.5} -(Ni ₁ Mo _{0.15})Si-PS	5.5	29.5	32.8	37.7	40.3	59.7	55.9	
K _{0.5} -(Ni ₁ Mo _{0.25})Si-PS	6.6	25.2	43.7	31.1	34.6	65.4	76.4	
K _{0.5} -(Ni ₁ Mo _{0.35})Si-PS	2.0	45.2	34.1	20.7	49.0	51.0	14.0	

Reaction conditions: P = 3.0 MPa, GHSV = 3000 mL/(g·h), n(H₂)/n(CO) = 1, T = 240 °C.

Table S4

Catalytic activity of catalysts prepared by different methods for synthesis of HAs from syngas.

Catalyst	Ni/Mo/K molar	X(CO) (%)	Selectivity (%)			Alcohol distribution (%)		STY _{ROH}
	ratio ^c		HCs	ROH	CO ₂	МеОН	С ₂₊ -ОН	(mg/(g·n))
K _{0.5} -(Ni ₁ Mo _{0.25})Si-PS ^a	1.00/0.11/0.34	6.6	25.1	43.8	31.1	34.6	65.4	76.4
$K_{0.5}Mo_{0.25}/Ni_1Si\text{-}PS^a$	1.00/0.13/0.43	3.6	20.1	42.4	37.5	46.9	53.1	46.9
K _{0.5} -(Ni ₁ Mo _{0.25})Si-DP ^a	1.00/0.18/0.60	0	0	0	0	0	0	0
$K_{0.5}$ -(Ni ₁ Mo _{0.25})Si-DP ^b	1.00/0.18/0.60	5.8	27.4	37.9	34.7	43.6	56.4	43.5

Reaction conditions: P = 3.0 MPa, GHSV = 3000 mL/(g·h), n(H₂)/n(CO) = 1, ^a T = 240 °C, ^b

T = 300 °C. ^c The data were estimated by XPS.

Fig. S1 TEM image of as-calcined K_0 -(Ni₁Mo_{0.25})Si-PS.

Fig. S2 K 2p XPS profiles of the as-reduced catalyst of (a) $K_{0.5}$ -(Ni₁Mo_{0.25})Si-PS, (b) $K_{0.5}Mo_{0.25}/Ni_1Si$ -PS, and (c) $K_{0.5}$ -(Ni₁Mo_{0.25})Si-DP.

Fig. S3 Influence of H₂/CO molar ratio on the performance of K_{0.1}-(Ni₁Mo_{0.25})Si-PS. Reaction conditions: T = 220 °C, P = 2.0 MPa, GHSV = 3000 mL/(g·h).

Fig. S4 Influence of pressure on the performance of $K_{0.5}$ -(Ni₁Mo_{0.25})Si-PS. Reaction conditions: T = 240 °C, P = 3.0 MPa, GHSV = 3000 mL/(g·h), n(H₂)/n(CO) = 1.

Fig. S5 Influence of GHSV on the performance of $K_{0.5}$ -(Ni₁Mo_{0.25})Si-PS. Reaction conditions: T = 240 °C, P = 3.0 MPa, GHSV = 3000 mL/(g·h), n(H₂)/n(CO) = 1.

Fig. S6 XRD pattern of as-used K_{0.5}-(Ni₁Mo_{0.25})Si-DP performed for 48 h under the reaction conditions of P = 3.0 MPa, T = 240 °C, GHSV = 3000 mL/(g·h), $n(H_2)/n(CO) = 1$.

Fig. S7 TG curve of as-used K_{0.5}-(Ni₁Mo_{0.25})Si-DP performed for 48 h under the reaction conditions of P = 3.0 MPa, T = 240 °C, GHSV = 3000 mL/(g·h), n(H₂)/n(CO) = 1.