Electronic Supplementary Information

Merging the Catechol-TiO₂ Complex Photocatalysis with TEMPO

for Selective Aerobic Oxidation of Amines into Imines

Ji-Long Shi,^a Huimin Hao,^a Xia Li,^a and Xianjun Lang ^{a*}

College of Chemistry and Molecular Sciences, Wuhan University,

Wuhan 430072, China

*E-mail: xianjunlang@whu.edu.cn

Table of contents

Rea	gents and solventsS2
	Figure S1. ATR-FTIR spectra of TiO ₂ , CAT A , CAT A -TiO ₂ and CAT D -TiO ₂ S2
	Figure S2. Diffuse reflectance UV-visible spectroscopy of TiO_2 , CAT A- TiO_2 and CAT D-
	Ti0 ₂
	Figure S3. The correlation between photocatalyst and light sources, (a) the UV-visible
	light absorbance of CAT D-TiO ₂ ; (b) the relative spectrum distribution of blue LEDS3
	Figure S4. UV-visible absorbance of spectroscopy of benzylamineS4
	Figure S5. The reaction kinetics profiles for the visible light photocatalytic oxidation of
	4-substituted benzylamines. a, H; b, CH ₃ ; c, OCH ₃ ; d, Cl; e, F; f, BrS5
	Figure S6. The ESR signals of N-radical captured by PBN during CAT D-TiO $_2$
	photocatalysis
	Figure S7. The XRD patterns of anatase TiO_2 and CAT D - TiO_2 S6
	Table S1. The influence of different LED_{S} on the selective aerobic oxidation benzylamine
	to imine under visible light irradiation ^[a] S7
	Table S2. Control experiments for the photocatalytic selective oxidation of benzylamine
	to imine under visible light irradiationS7
	Table S3. The influence of initial O_2 pressure on the selective aerobic oxidation
	benzylamine to imine under visible light irradiation ^[a] S8
	Table S4. The influence of the solvent on the selective aerobic oxidation benzylamine to
	imine under visible light irradiation ^[a] S8
	Table S5. The influence of the amount of TiO_2 on the selective aerobic oxidation
	benzylamine to imine under visible light irradiation ^[a]
	Table S6. The influence of the amount of TEMPO on the selective aerobic oxidation
	benzylamine to imine under visible light irradiation ^[a]

Reagents and solvents

All the reagents were obtained from commercial suppliers such as Sigma-Aldrich, Alfa Aesar and TCI, J&K Scientific, etc. The solvents were supplied by Merck, Fischer Scientific and Sinopharm Chemical Reagent Co., LTD. Benzyl- α , α d2-amine was supplied by CDN Isotopes, Quebec, Canada. Anatase TiO₂ (Ishihara ST-01) used in this paper was purchased from Ishihara Sangyo Kaisha, LTD., Japan. All the reagents and solvents were directly used without further purification.

Figure S1. ATR-FTIR spectra of TiO_2 , CAT A, CAT A-TiO₂ and CAT D-TiO₂

Figure S2. Diffuse reflectance UV-visible spectroscopy of TiO_2 , CAT A- TiO_2 and CAT D- TiO_2

Figure S3. The correlation between photocatalyst and light sources, (a) the UVvisible light absorbance of CAT D-TiO₂; (b) the relative spectrum distribution of blue LED

Figure S4. UV-visible absorbance of spectroscopy of benzylamine (a), TEMPO (b), **CAT A** (c) and **CAT D** (d)

Figure S5. The reaction kinetics profiles for the visible light photocatalytic oxidation of 4-substituted benzylamines. a, H; b, CH_3 ; c, OCH_3 ; d, Cl; e, F; f, Br. Reaction conditions: 0.3 mmol of amine, 50 mg TiO₂, 2.4×10⁻³ mmol of **CAT D**, 0.015 mmol of TEMPO, 1 mL of CH_3CN , 3 W blue LED irradiation.

Figure S6. The ESR signals of N-radical captured by PBN during CAT D-TiO $_2$ photocatalysis

Figure S7. The XRD patterns of anatase $\rm TiO_2$ and CAT D-TiO_2

Entry	LED	$\lambda_{max} [nm]$	Conv.[%] ^[b]	Sel.[%] ^[b]
1	Red	630	0	0
2	Yellow	590	3	98
3	Green	510	16	96
4	Blue	460	68	98
5	Violet	400	85	98
6	White	Continuous	26	98
7	Warm	Continuous	12	97

Table S1. The influence of different LED_S on the selective aerobic oxidation benzylamine to imine under visible light irradiation^[a]

[a] Reaction conditions: 0.3 mmol of benzylamine, 2.4×10^{-3} mmol of **CAT D**, 50 mg of TiO₂, 0.015 mmol of TEMPO, 3 W LED irradiation, 1 mL of CH₃CN, 45 min. [b] Determined by GC-FID using chlorobenzene as the internal standard, conversion of benzylamine, selectivity of *N*-benzylidenebenzylamine.

Entry	Conditions	Conv.[%] ^[b]	Sel.[%] ^[b]
1	Standard	68	98
2	TiO ₂	9	96
3	TiO _{2,} TEMPO	10	97
4	TEMPO	0	0
5	САТ D , ТЕМРО	0	0
6	CAT D	0	0
7	Blank	0	0
8	Dark	0	0
9	N_2	6	98
10	CD ₃ CN	70	94
11	<i>p</i> -BQ (0.2 equiv.)	2	98
12	AgNO ₃ (1 equiv.)	21	72

Table S2. Control experiments for the photocatalytic selective oxidation of benzylamine to imine under visible light irradiation ^[a]

[a] Reaction conditions: 0.3 mmol of benzylamine, 2.4×10^{-3} mmol of **CAT D**, 50 mg of TiO₂, 0.015 mmol of TEMPO, 3 W blue LED irradiation, 1 mL of CH₃CN, 45 min. [b] Determined by GC-FID using chlorobenzene as the internal standard, conversion of benzylamine, selectivity of *N*-benzylidenebenzylamine.

Entry	Initial O ₂ pressure [atm]	Conv.[%]	Sel.[%]
1	0.2	68	98
2	0.5	73	98
3	1.0	76	99
4	1.5	77	97
5	2.0	81	98
6	2.5	81	99

Table S3. The influence of initial O_2 pressure on the selective aerobic oxidation benzylamine to imine under visible light irradiation ^[a]

[a] Reaction conditions: 0.3 mmol of benzylamine, 2.4×10^{-3} mmol of **CAT D**, 50 mg of TiO₂, 0.015 mmol of TEMPO, 3 W blue LED irradiation, 1 mL of CH₃CN, 45 min. [b] Determined by GC-FID using chlorobenzene as the internal standard, conversion of benzylamine, selectivity of *N*-benzylidenebenzylamine.

Entry	Solvent	Conv.[%] ^[b]	Sel.[%] ^[b]
1	CH ₃ CN	68	98
2	BTF	63	98
3	EtOAc	46	98
4	PhMe	62	98
5	DCM	54	98
6	1,4-Dioxane	53	98

Table S4. The influence of the solvent on the selective aerobic oxidation benzylamine to imine under visible light irradiation ^[a]

[a] Reaction conditions: 0.3 mmol of benzylamine, 2.4×10^{-3} mmol of **CAT D**, 50 mg of TiO₂, 0.015 mmol of TEMPO, 3 W blue LED irradiation, 1 mL of CH₃CN, 45 min. [b] Determined by GC-FID using chlorobenzene as the internal standard, conversion of benzylamine, selectivity of *N*-benzylidenebenzylamine. BTF, benzotrifluoride; EtOAc, ethyl acetate; PhMe, toluene; DCM, dichloromethane.

Entry	TiO ₂ [mg]	Conv.[%] ^[b]	Sel.[%] ^[b]
1	10	35	97
2	20	48	95
3	30	56	98
4	40	61	98
5	50	68	98
6	60	75	98

Table S5. The influence of the amount of TiO_2 on the selective aerobic oxidation benzylamine to imine under visible light irradiation ^[a]

[a] Reaction conditions: 0.3 mmol of benzylamine, 2.4×10^{-3} mmol of **CAT D**, 0.015 mmol of TEMPO, 3 W blue LED irradiation, 1 mL of CH₃CN, 45 min. [b] Determined by GC-FID using chlorobenzene as the internal standard, conversion of benzylamine, selectivity of *N*-benzylidenebenzylamine.

Entry	TEMPO [µmol]	Conv.[%] ^[b]	Sel.[%] ^[b]
1	0	18	94
2	3	40	95
3	6	53	98
4	9	62	96
5	12	66	97
6	15	68	98
7	18	68	98
8	21	72	96
9	24	75	98
10	27	76	98
11	30	77	97

oxidation benzylamine to imine under visible light irradiation ^[a]

Table S6. The influence of the amount of TEMPO on the selective aerobic

[a] Reaction conditions: 0.3 mmol of benzylamine, 2.4×10^{-3} mmol of **CAT D**, 50 mg of TiO₂, 3 W blue LED irradiation, 1 mL of CH₃CN, 45 min. [b] Determined by GC-FID using chlorobenzene as the internal standard, conversion of benzylamine, selectivity of *N*-benzylidenebenzylamine.