Supplementary Information

High selectivity PdZn/ZnO catalysts for methanol steam reforming reaction

Ewa Nowicka,^a Sultan M. Althahban,^b Yuan Luo,^c René Kriegel,^d Greg Shaw, ^a David J. Morgan, ^a Qian He, ^a Masashi Watanabe, ^b Marc Armbrüster, ^d Christopher J. Kiely ^{a,b} and Graham J. Hutchings *^a

^a Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, UK

^b Department of Materials Science and Engineering, Lehigh University, 5 East Packer Avenue, Bethlehem, PA 18015-3195, USA

^c Max-Planck-Institut für Chemische Physik fester Stoffe, Nöthnitzer Strasse 40, 01187 Dresden, Germany

^d Faculty of Natural Sciences, Institute of Chemistry, Materials for Innovative Energy Concepts, Chemnitz University of Technology, 09107 Chemnitz, Germany

*Correspondence to Graham J. Hutchings, e-mail: hutch@cardiff.ac.uk

List of Contents

Figure S1. Equilibrium calculations relating to the methanol steam reforming reaction: a) temperature dependence of methanol conversion and CO_2 selectivity at equilibrium; b) temperature dependence of relative abundances of gases in the equilibrium state when methanol steam reforming, methanol decomposition and water gas shift were taken into account (p = 1 bar; MeOH: H₂O ratio 1:1) [1]

Figure S2. Powder XRD analysis of the bare ZnO_{nano} support after treatment with HCl.

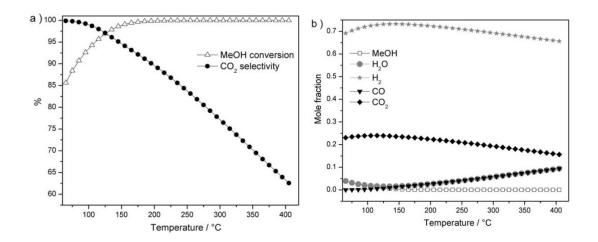

Figure S3. Pd(3d) XPS spectrum obtained from the fresh M_{Imp} derived $3wt\%PdZn/ZnO_{nano}$ sample.

Figure S4. Pd(3d) XPS spectrum obtained from a PdCl₂ reference sample.

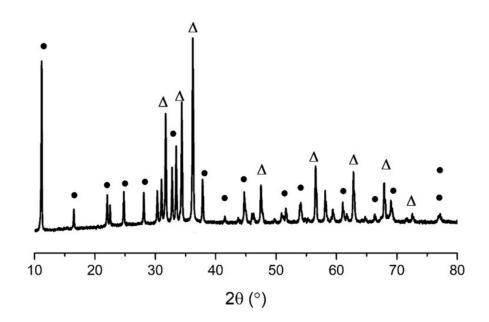

Figure S5. STEM-XEDS elemental maps of the unused M_{Imp} 3%PdZn/ZnO catalyst showing the elemental distribution of Pd, Cl, Zn and O.

Figure S6. STEM-XEDS elemental maps of the unused C_{Imp} 3%PdZn/ZnO catalyst showing the elemental distribution of Pd, Cl, Zn and O.

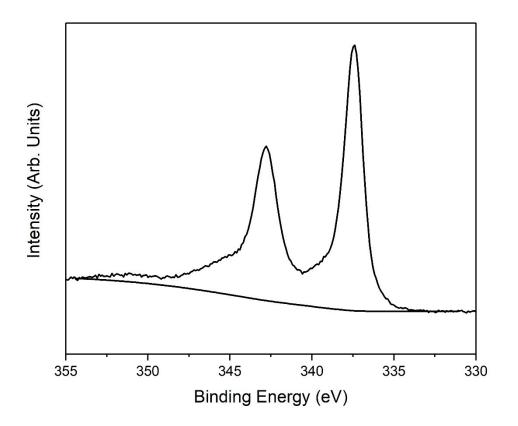

Figure S1. Equilibrium calculations relating to the methanol steam reforming reaction: a) temperature dependence of methanol conversion and CO_2 selectivity at equilibrium; b) temperature dependence of relative abundances of gases in the equilibrium state when methanol steam reforming, methanol decomposition and water gas shift were taken into account. (p = 1 bar; MeOH: H₂O ratio 1:1) [1].

Figure S2. Powder XRD analysis of the bare ZnO_{nano} support after treatment with HCl. *Legend:* Reflections from $Zn_5Cl_2H_{10}O_9(\bullet)$ and $ZnO(\Delta)$.

Figure S3. Pd(3d) XPS spectrum obtained from the fresh M_{Imp} derived $3wt\%PdZn/ZnO_{nano}$ sample. The Pd($3d_{5/2}$) peak is found to be centered at 337.4 eV and taken together with the peak shape, is consistent with the presence of Pd-Cl species as shown in Figure S4.

Figure S4. Pd(3d) XPS spectra obtained from a bulk $PdCl_2$ reference sample. The Pd(3d_{5/2}) binding energy is 337.5 eV and the Cl/Pd ratio found to be 1.92 which is close to the expected stoichiometry.

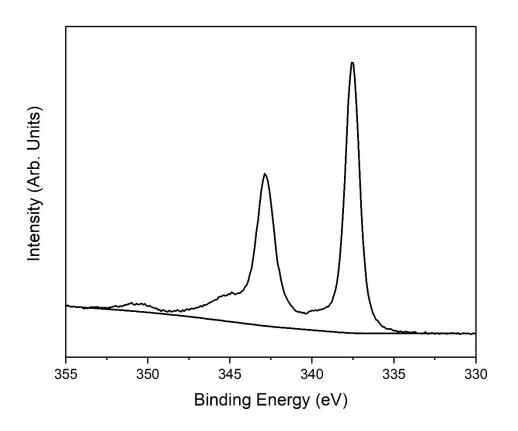
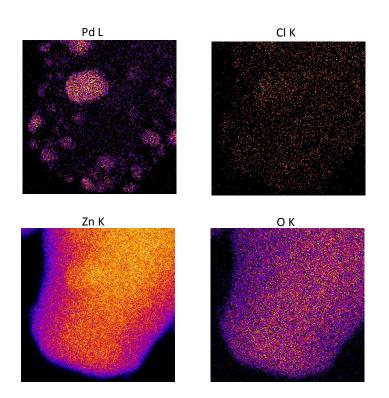
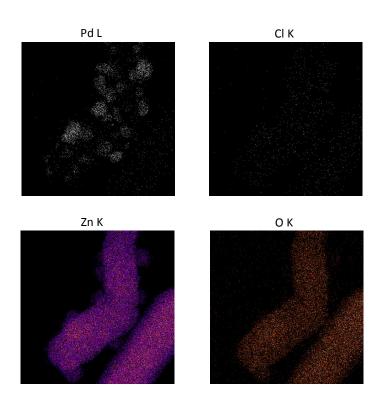




Figure S5. STEM-XEDS elemental maps of the unused M_{Imp} 3%PdZn/ZnO catalyst showing the elemental distribution of Pd, Cl, Zn and O. The Cl signal is at the noise level (1-3 counts).

Figure S6. STEM-XEDS elemental maps of the unused C_{Imp} 3%PdZn/ZnO catalyst showing the elemental distribution of Pd, Cl, Zn and O. The Cl signal is at the noise level (1-3 counts).

Reference:

[1] Y. Luo, Unsupported Nanoparticulate ZnPd: Systematic Preparation and Performances in Methanol Steam Reforming. **2013** PhD Thesis, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan; Max-Planck Institut für Chemische Physik fester Stoffe, Dresden.