Supporting information

Polyoxometalate catalysts with co-substitution of VO^{2+} and transition metals and their catalytic performance in isobutane oxidation

Yanchun Liu, ${ }^{\text {a }}$ Jingfang He, ${ }^{\text {a,b }}$ Wenling Chu, ${ }^{\text {ª }}$ Weishen Yang, ${ }^{\text {,a }}$

Supplementary Figures and Tables

Figure.S1 XRD patterns of V-containing Cs-salt of HPCs with the incorporation of different transition metals. a: $\mathrm{Cs}_{2.0} \mathrm{~V}_{0.3} \mathrm{Cu}_{0.2} \mathrm{PMo}_{12} \mathrm{O}_{40} ; \mathrm{b}$: $\mathrm{Cs}_{2.0} \mathrm{~V}_{0.2} \mathrm{Fe}_{0.2} \mathrm{PMo}_{12} \mathrm{O}_{40} ; \mathrm{c}: ~ \mathrm{Cs}_{2.0} \mathrm{~V}_{0.2} \mathrm{Ce}_{0.2} \mathrm{PMo}_{12} \mathrm{O}_{40}$; $\mathrm{d}: \mathrm{Cs}_{2.0} \mathrm{~V}_{0.3} \mathrm{NiO}_{2} \mathrm{PMMo}_{12} \mathrm{O}_{40} ; \mathrm{e}: \mathrm{Cs}_{2.0} \mathrm{Cu}_{0.2} \mathrm{PMo}_{11} \mathrm{VO}_{40}$

Figure S2 XPS spectra of Mo 3d (A) and V $2 P(B)$ for V-containing Cs-salt of HPCs with the incorporation of different transition metals. a: $\mathrm{Cs}_{2.0} \mathrm{Cu}_{0.2} \mathrm{PMo}_{11} \mathrm{VO}_{40} ; \mathrm{b}: \mathrm{Cs}_{2.0} \mathrm{~V}_{0.3} \mathrm{Cu}_{0.2} \mathrm{PMo}_{12} \mathrm{O}_{40}$; c: $\mathrm{Cs}_{2.0} \mathrm{~V}_{0.2} \mathrm{Fe}_{0.2} \mathrm{PMo}_{12} \mathrm{O}_{40} ; \quad$ d: $\mathrm{Cs}_{2.0} \mathrm{~V}_{0.2} \mathrm{Ce}_{0.2} \mathrm{PMo}_{12} \mathrm{O}_{40} ; \quad$ e: $\mathrm{Cs}_{2.0} \mathrm{~V}_{0.3} \mathrm{NiO}_{2} \mathrm{PMo}_{12} \mathrm{O}_{40}$

Figure.S3 NH_{3}-TPD patterns of Cs salt of V-containing HPC with the incorporation of different transition metals.

Table S1 Chemical analysis of the catalysts after calcination at $300^{\circ} \mathrm{C}$

Catalysts	Atomic ratio			
	Cs / P	M / P $(\mathrm{M}=\mathrm{Cu}, \mathrm{Fe}, \mathrm{Ni}$, or Ce$)$	V / P	Mo / P
$\mathrm{Cs}_{2.0} \mathrm{~V}_{0.3} \mathrm{Cu}_{0.2} \mathrm{PMo}_{12} \mathrm{O}_{40}$	2.02	0.21	0.30	11.6
$\mathrm{Cs}_{2.0} \mathrm{Cu}_{0.2} \mathrm{PMo}_{11} \mathrm{VO}_{4}$	2.00	0.24	1.10	11.0
$\mathrm{Cs}_{2.0} \mathrm{~V}_{0.3} \mathrm{Ni}_{0.2} \mathrm{PMo}_{12} \mathrm{O}_{4}$	1.94	0.22	0.29	11.6
$\mathrm{Cs}_{2.0} \mathrm{~V}_{0.2} \mathrm{Fe}_{0.2} \mathrm{PMo}_{12} \mathrm{O}_{4}$	1.99	0.24	0.22	12.1
$\mathrm{Cs}_{2.0} \mathrm{~V}_{0.2} \mathrm{Ce}_{0.2} \mathrm{PMo}_{12} \mathrm{O}_{4}$	1.90	0.23	0.24	12.8

Table S2 Adsorption amount of $\mathbf{N H}_{3}$ on the surface of Cs salt of V-containing HPC with the incorporation of different transition metals.

Catalysts	Adsorption amount of $\mathrm{NH}_{3}(\mathrm{mmol} / \mathrm{g})$			Total acidity
	$150 \sim 350{ }^{\circ} \mathrm{C}$	$350 \sim 450{ }^{\circ} \mathrm{C}$	$450 \sim 600{ }^{\circ} \mathrm{C}$	$(\mathrm{mmol} / \mathrm{g})$
$\mathrm{Cs}_{2.0} \mathrm{Cu}_{0.2} \mathrm{PMo}_{12} \mathrm{O}_{40}$	0.1094	0.5714	0.7437	1.4245
$\mathrm{Cs}_{2.0} \mathrm{~V}_{0.3} \mathrm{PMo}_{12} \mathrm{O}_{40}{ }^{*}$	0.0294	0.5732	0.5610	1.1636
$\mathrm{Cs}_{2.0} \mathrm{~V}_{0.3} \mathrm{Cu}_{0.2} \mathrm{PMo}_{12} \mathrm{O}_{40}$	0.1191	0.6248	0.9018	1.6457
$\mathrm{Cs}_{2.0} \mathrm{Cu}_{0.2} \mathrm{PMo}_{11} \mathrm{VO}_{4}$	0.1676	0.5255	0.7240	1.4171
$\mathrm{Cs}_{2.0} \mathrm{~V}_{0.3} \mathrm{Ni}_{0.2} \mathrm{PMo}_{12} \mathrm{O}_{4}$	0.0565	0.3888	0.9349	1.3802
$\mathrm{Cs}_{2.0} \mathrm{~V}_{0.2} \mathrm{Fe}_{0.2} \mathrm{PMo}_{12} \mathrm{O}_{4}$	0.1133	0.3417	0.9512	1.4052
$\mathrm{Cs}_{2.0} \mathrm{~V}_{0.2} \mathrm{Ce}_{0.2} \mathrm{PMo}_{12} \mathrm{O}_{4}$	0.1548	0.4059	0.8314	1.3921

* : From our previous study in Appl. Catal. A. Gen., 2018, 556:104-112

