Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2018

Supporting Information for

Deactivation Behavior of an Iron-Molybdate Catalyst During Selective Oxidation of Methanol to Formaldehyde[†]

Kristian Viegaard Raun,^a Lars Fahl Lundegaard,^b Jacques Chevallier,^c Pablo Beato,^b Charlotte Clausen Appel,^b Kenneth Nielsen,^d Max Thorhauge,^b Anker Degn Jensen^a and Martin Høj*^a

^aDTU Chemical Engineering, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark. E-mail: <u>mh@kt.dtu.dk</u>. Tel: +45 45252842

> ^bHaldor Topsøe A/S, 2800 Kgs. Lyngby, (Denmark) ^cDepartment of Physics and Astronomy, Aarhus University, 8000 Aarhus, Denmark ^dDepartment of Physics, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark

Figure S1: Raman spectra of relevant reference phases.

Figure S2: Relative rate for all activity experiments.

- Figure S3: Arrhenius plot measured prior to experiments
- Figure S4: Carbon mol balance for activity measurements.

Figure S5: XRD patterns of most relevant spectral range of (Figure 2)

Figure S6: Raman spectra of most relevant spectral range (Figure 3)

Figure S7: Test for sample laser damage during Raman spectroscopy for the sample run for 600 h on stream.

Figure S8-S12: SEM-EDS of fresh and spent catalyst (TOS = 10-600 h).

Figure S13-S17: SEM images of fresh and spent catalyst (TOS = 10-600 h).

Figure S18-S27 STEM high-angle annular dark-field images and elemental mapping images.

Figure S28: XPS spectrums of fresh and spent catalyst (TOS = 10-600 h).

Raman spectra: Relevant reference phases.

The Raman spectra of β -MoO₃ are shown in the literature¹ and the other relevant spectra are shown in Figure S1.

1 T. M. McEvoy and K. J. Stevenson, *Langmuir*, 2005, **21**, 3521–8.

Figure S1 – Raman spectra of Fe₂(MoO₄)₃, α-MoO₃, β-FeMoO₄, α-FeMoO₄, Fe₂O₃ and MoO₂.

Activity measurement: Comparison of relative rate between all activity experiments, Arrhenius plot and C-mol balances and selectivities.

Figure S2 – Relative rates of the catalyst for all activity experiments TOS = 10, 100, 250 and 600 hours.

Figure S3- Arrhenius plot of rate constants measured prior to all activity experiments of the catalyst.

Figure S4 – Carbon mole balances and selectivities of activity experiments TOS = 10, 100, 250 and 600 hours.

XRD patterns and Raman spectra: Zoom-ins of the most relevant spectral ranges

Figure S5 – Zoom-in of Figure 2: XRD patterns of the fresh and spent FeMo catalyst samples (TOS = 10, 100, 250 and 600 h).

Figure S6 – Zoom-in of Figure 3: Raman spectra of the fresh and spent FeMo catalyst samples (TOS = 10, 100, 250 and 600 h). Due to the inhomogeneous nature of the catalyst after 600 h spectra from two representative positions are shown.

Raman spectroscopy: Test for sample laser damage at increasing laser power for the sample run for 600 h on stream.

Figure S7 – Raman spectra of the spent FeMo catalyst sample (TOS = 600 h) at varying laser power.

Figure S7 shows Raman spectra of the spent FeMo catalyst after 600 h on stream at increasing laser power. At a laser power of 0.6 mW the bands at 846, 353, 774 and 900 cm⁻¹ were assigned to the metastable β -MoO₃. However, bands at 682, 707 and 812 cm⁻¹ could not be assigned. By increasing the laser power to 1 mW, the non-assigned bands were selectively removed (indicating a high reactivity of this phase), and by increasing the laser power further to 2 mW, the β -MoO₃ was transformed into the thermodynamically stable α -MoO₃

SEM: EDS analysis and Images

Fresh catalyst (a)	The second s
Mo/Fe	The Property and a
Area $1 = 1.43$	
Area $2 = 7.19$	A CONTRACT OF
Area $3 = 9.03$	Maria Maria Maria
Area $4 = 7.51$	
	A A THE A PART OF A
	The second of the second
	The fait of the second
	SE1
Fresh catalyst (b)	
Mo/Fe:	
Mo/Fe: Area 1 = 6.47	
Mo/Fe: Area 1 = 6.47 Area 2 = 4.48	
Mo/Fe: Area $1 = 6.47$ Area $2 = 4.48$ Area $3 = 1.40$	
Mo/Fe: Area $1 = 6.47$ Area $2 = 4.48$ Area $3 = 1.40$ Area $4 = 1.52$	
Mo/Fe: Area $1 = 6.47$ Area $2 = 4.48$ Area $3 = 1.40$ Area $4 = 1.52$ Area $5 = 1.56$	
Mo/Fe: Area $1 = 6.47$ Area $2 = 4.48$ Area $3 = 1.40$ Area $4 = 1.52$ Area $5 = 1.56$	
Mo/Fe: Area $1 = 6.47$ Area $2 = 4.48$ Area $3 = 1.40$ Area $4 = 1.52$ Area $5 = 1.56$	
Mo/Fe: Area 1 = 6.47 Area 2 = 4.48 Area 3 = 1.40 Area 4 = 1.52 Area 5 = 1.56	
Mo/Fe: Area 1 = 6.47 Area 2 = 4.48 Area 3 = 1.40 Area 4 = 1.52 Area 5 = 1.56	
Mo/Fe: Area $1 = 6.47$ Area $2 = 4.48$ Area $3 = 1.40$ Area $4 = 1.52$ Area $5 = 1.56$	
Mo/Fe: Area 1 = 6.47 Area 2 = 4.48 Area 3 = 1.40 Area 4 = 1.52 Area 5 = 1.56	

Figure S8 – SEM-EDS of fresh catalyst.

Figure S9 – SEM-EDS of spent catalyst TOS = 10 h.

Figure S10 – SEM-EDS of spent catalyst TOS = 100 h.

Spent catalyst TOS = 250 h (a) Mo/Fe: Area = 2.07	
Spent catalyst TOS = 250 h (b) Mo/Fe: Area 1 = 0.015 Area 2 = 1.09 Area 3 = 2.33 Area 4 = 0.66 Area 5 = 0.037 Area 6 = 0.091	

Figure S11 – SEM-EDS of spent catalyst TOS = 250 h.

Figure S12 – SEM-EDS of spent catalyst TOS = 600 h.

Figure S13 – SEM images of fresh catalyst.

Figure S14 – SEM images of spent catalyst (TOS = 10 h).

Figure S15 – SEM images of spent catalyst (TOS = 100 h).

Figure S16 – SEM images of spent catalyst (TOS = 250 h). Marked crystals are MoO₃.

Figure S17 – SEM images of spent catalyst (TOS = 600 h). Marked crystal is MoO₃.

STEM: High-angle annular dark-field images and elemental mapping images.

Figure S18 – STEM-HAADF images of fresh catalyst.

Figure S19 – STEM elemental mapping of fresh catalyst. Mo/Fe ratio: b: spect_003_FeMo = 1.66 and, b: spect_003 = 64.9, c1 = 14.7, c2 = 1.55 and c3 = 1.64.

Figure S20 – STEM-HAADF images of spent catalyst (TOS = 10 h).

Figure S21 - STEM elemental mapping of spent catalyst (TOS = 10 h). Mo/Fe ratio: a total = 1.12, a2 = 1.25, a3 = 0.13, a4 = 1.00, b1 = 1.33, b2 = 1.44, b3 = 1.05, b4 = 0.90, c1 = 1.31, c2 = 1.49 and c3 = 1.24.

Figure S22 – STEM-HAADF images of spent catalyst (TOS = 100 h).

Figure S23 - STEM elemental mapping of spent catalyst (TOS = 100 h). Mo/Fe ratio: a total = 0.81, a2 = 0.83, a3 = 0.65, a4 = 1.36, a5 = 0.81, a6 = 0.84, b total = 0.68, b2 = 0.92, b3 = 0.45, b5 = 0.057, c total = 0.46, c2 = 0.29, c3 = 0.51, c4 = 0.91, c4 = 0.91 and d total = 0.83.

Figure S24 – STEM-HAADF images of spent catalyst (TOS = 250 h).

Figure S25 - STEM elemental mapping of spent catalyst (TOS = 250 h). Mo/Fe ratio: a2 = Fe, a3 = 0.43, b1 = 0.66, b2 = 0.0026, b3 = 0.069, b4 = 0.26, b5 = 0.86 and b6 = 4.42.

Figure S26 – STEM-HAADF images of spent catalyst (TOS = 600 h).

Figure S27 - STEM elemental mapping of spent catalyst (TOS = 600 h). Mo/Fe ratio: a2 = 0.0094, a3 = 0.0041, b2 = 0.0057, b3 = 0.004 and c2 = 0.0090.

XPS: spectra with respect to Molybdenum, Iron and Oxygen.

Figure S28 – XPS spectra with respect to molybdenum, iron and oxygen for fresh and spent catalyst. Shirley background is shown.