Effects of Graphitization of Carbon Nanosphere on Hydrodeoxygenation Activity of Molybdenum Carbide

Huijun Guo^a, Yumeng Song^a, Ping Chen^a, Hui Lou^{*a}, and Xiaoming Zheng^a

^a Institute of Catalysis, Department of Chemistry, Zhejiang University, Hangzhou,

310028, P. R. China.

* Corresponding author. Tel: +86 571-88273283;

E-mail address: hx215@zju.edu.cn

Supports	Atomic percentage (%)							
	C-C in plane	C-C defects	C-0	C=O				
CNS	26.6	32.2	17.7	23.5				
GCNS-1	37.6	31.2	14.3	16.9				
GCNS-10	55.3	19.4	10.9	14.4				
GCNS-50	65.9	13.8	8.7	11.6				
MWNT	70.3	5.6	13.5	10.6				
AC	22.0	25.7	31.6	20.7				

Table S1 XPS results for the C 1s spectra of different carbon materials.

Catalysts	Temperature	Binding energy (eV) (Atomic percentage (%))						
Catalysts	(К)	Mo ²⁺	Mo ^{2~4+}	Mo ⁴⁺	Mo ^{4~6+}	M0 ⁶⁺		
20%Mo ₂ C/CNS	393 °	228.21 (10.9)	228.70 (4.4)	229.41 (23.8)	231.18 (20.9)	232.53 (40.		
	533	228.20 (36.7)	228.72 (11.4)	229.38 (25.4)	231.20 (17.3)	232.49 (9.3		
	573	228.18 (52.3)	228.69 (11.3)	229.39 (15.8)	231.20 (18.9)	232.50 (1.6		
20%Mo ₂ C/GCNS-1	393 ^a	228.33 (12.7)	228.68 (18.6)	229.30 (21.6)	231.19 (8.6)	232.42 (38.		
	533	228.30 (48.2)	228.71 (12.0)	229.28 (17.1)	231.21 (11.6)	232.37 (11.3		
	573	228.28 (56.3)	228.70 (24.9)	229.32 (14.3)	231.17 (2.0)	232.39 (2.5		
20%Mo ₂ C/GCNS-10	393 ª	228.39 (21.8)	228.71 (14.7)	229.27 (22.1)	231.22 (17.6)	232.38 (23.9		
	533	228.38 (60.9)	228.68 (8.3)	229.30 (19.3)	231.19 (4.0)	232.43 (7.5		
20%Mo₂C/GCNS-50	573	228.36 (67.7)	228.68 (12.3)	229.28 (11.4)	231.23 (5.4)	232.38 (3.1		
	393 ^a	228.37 (21.3)	228.71 (13.3)	229.41 (28.3)	231.17 (8.7)	232.36 (28.		
	533	228.39 (61.1)	228.69 (14.8)	229.40 (11.2)	231.21 (6.8)	232.42 (6.1		
	573	228.40 (74.0)	228.69 (17.2)	229.38 (5.0)	231.22 (2.5)	232.40 (1.4		
20%Mo ₂ C/MWNT 20%Mo ₂ C/AC	393 ^a	228.41 (21.7)	228.68 (15.0)	229.32 (25.7)	231.20 (20.9)	232.51 (16.		
	533	228.41 (63.7)	228.70 (7.6)	229.28 (19.9)	231.18 (3.8)	232.48 (4.9		
	573	228.40 (75.5)	228.71 (11.3)	229.30 (8.3)	231.20 (3.7)	232.50 (1.2		
	393 ^a	228.21 (3.8)	228.72 (11.7)	229.37 (24.1)	231.18 (10.9)	232.53 (49.		
	533	228.16 (35.4)	228.69 (8.3)	229.41 (5.7)	231.22 (35.5)	232.49 (15.		
	573	228.18 (48.1)	228.70 (12.0)	229.39 (5.5)	231.21 (26.6)	232.51 (7.9		

Table S2 XPS results of the Mo 3d spectra of different catalysts.

^a 393K is the temperature at which the samples were pretreated in Ar.

Catalysta	Temperature	Binding energy (eV) (Atomic percentage (%))						
Catalysts	(К)	C-Mo	C-C in plane	C-C defects	C-0	C=O		
20%Mo ₂ C/CNS	393 ª	284.21 (7.9)	284.58 (31.8)	285.51 (33.6)	286.71 (12.1)	288.67 (14		
	533	284.20 (11.6)	284.61 (32.1)	285.49 (33.7)	286.71 (8.9)	288.67 (13		
	573	284.20 (16.6)	284.60 (32.2)	285.51 (33.9)	286.70 (6.4)	288.69 (10		
20%Mo ₂ C/GCNS-1	393 °	284.16 (10.0)	284.58 (41.7)	285.50 (28.2)	286.68 (11.2)	288.68(8.		
	533	284.15 (14.6)	284.61 (41.3)	285.47 (28.2)	286.70 (7.5)	288.69 (8		
	573	284.15 (18.0)	284.61 (41.9)	285.51 (28.3)	286.67 (3.8)	288.67 (8		
20%Mo ₂ C/GCNS-10	393 ª	284.13 (11.1)	284.60 (54.0)	285.51 (17.5)	286.71 (9.5)	288.65 (7		
	533	284.14 (15.9)	284.59 (54.4)	285.50 (17.4)	286.69 (3.4)	288.66 (8		
	573	284.14 (18.6)	284.59 (54.5)	285.50 (17.3)	286.69 (2.1)	288.70 (7		
20%Mo ₂ C/GCNS-50	393 ª	283.98 (9.5)	284.60 (63.5)	285.47 (14.9)	286.69 (7.8)	288.69 (4		
	533	284.00 (15.5)	284.58 (63.1)	285.50 (14.8)	286.71 (2.7)	288.70 (3		
	573	284.01 (18.7)	284.60 (63.1)	285.48 (15.0)	286.68 (1.1)	288.72 (2		
20%Mo ₂ C/MWNT	393 ª	284.00 (10.8)	284.58 (65.4)	285.51 (8.4)	286.70 (8.1)	288.72 (7		
	533	283.98 (16.6)	284.58 (65.4)	285.48 (8.7)	286.68 (3.2)	288.70 (6		
	573	284.01 (19.1)	284.60 (65.4)	285.50 (8.2)	286.68 (2.1)	288.69 (5		
20%Mo ₂ C/AC	393 °	284.18 (8.5)	284.62 (28.1)	285.47 (27.6)	286.71 (24.3)	288.67 (12		
	533	284.17 (12.7)	284.60 (28.3)	285.50 (27.8)	286.69 (21.8)	288.69 (9		
	573	284.20 (17.5)	284.62 (28.5)	285.48 (28.0)	286.70 (17.1)	288.70 (8		

Table S3 XPS results of the C 1s spectra of different catalysts.	

^a 393K is the temperature at which the samples were pretreated in Ar.

Carbon cunnarte .	Product distribution (%)							Conversion (9/)	V:=1=1 (0()	
Carbon supports	C ₁₅	C ₁₆	C ₁₆ =	C ₁₇ ⁼	C ₁₇	C ₁₈ ⁼	C ₁₈	Others	Conversion (%)	field (%)
AC	0.1	8.6	0.6	0.3	0.7	15.4	32.9	8.9	67.5	58.6
CNS	0.3	9.2	0.8	0.5	1.8	9.4	44.0	8.1	74.1	66.0
GCNS-1	0.4	13.7	0.3	0.6	1.8	12.6	53.3	3.4	86.0	82.6
GCNS-10	0.2	14.7	0.56	0.2	1.7	6.4	65.	1.8	91.3	89.5
GCNS-50	0.3	14.0	0.3	0.6	2.4	6.7	57.1	3.2	84.5	81.3
MWNT	0.3	14.3	0.6	0.4	1.4	7.5	66.8	2.8	94.1	91.4

Table S4 Results of the parallel reactions of 20%Mo₂C catalysts on different supports ^a.

^a Parallel experiments were conducted for reproducibility concerns, and the relative deviation of conversion and yield of hydrocarbons for each pair of parallel reactions were less than 2%.

Fig. S1 XPS spectra of $20\%Mo_2C/GCNS-50$ at room temperature.

Fig. S2 N_2 adsorption-desorption isotherms (a) and pore size distributions (b) for CNS, GCNS-1, GCNS-10, and GCNS-50.

Fig. S3 SEM images of a) 5%, b) 10%, c) 20%, and d) 40%Mo $_2$ C/CNS catalysts.

Fig. S4 XRD patterns of a) 5%, b) 10%, c) 20%, and d) 40%Mo $_2$ C/CNS catalysts.

Fig. S5 H_2 -TPR profiles of a) 20%Mo₂C/CNS and b) 20%Mo₂C/GCNS-10 precursors.

Fig. S6 Gas chromatogram of gaseous phase in the autoclave a) before reaction and b) after reaction.