Electronic supplementary information

Fe-N-functionalized carbon electrocatalyst derived from zeolitic imidazolate framework for oxygen reduction: Fe and NH₃ treatment effects

Thanh-Nhan Tran, Cheol-Hwan Shin, Byong-June Lee, Jitendra Samdani, Jong-Doek Park, Tong-Hyun Kang and Jong-Sung Yu*

Department of Energy Science and Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Republic of Korea

Email: jsyu@dgist.ac.kr

Reagent and chemicals

Zinc (II) nitrate hexahydrate (Zn(NO₃)₂.6H₂O, > 98.0%), 2-methylimidazole (C₄H₆N₂, 99%) and iron (III) acetylacetonate (Fe(acac)₃, 97%) were purchased from Sigma-aldrich (U.S.A.). Methanol (CH₃OH, 99.5%) and ethanol (CH₃CH₂OH, 99%)) were purchased from Samchun Pure Chemical Co., Ltd. (Korea). Ultrapure water (resistance > 18 M Ω cm⁻¹) was used in all experiments.

Fig. S1 Photographic images of Fe_x -N/C (x = 0.02, 0.04, 0.06, and 0.08) precursors, which correspond to the different mixtures of $Fe(acac)_3$ and ZIF-8.

Fig. S2 XRD spectra of $Fe_{0.06}$ -N/C-900-1p, $Fe_{0.06}$ -N/C-900-N₂, and $Fe_{0.06}$ -N/C-900.

Samples	S _{BET} (m²/g)	S _{micro} (m²/g)	S _{micro} /S _{BET}	V (cm³/g)	I _D /I _G	I _{AM} /I _G
Fe _{0.06} -N/C-900-N ₂	1094.0	960.6	87.8%	0.57	0.97	0.71
Fe _{0.02} -N/C-900	2313.4	1426.2	61.6%	1.40	0.90	0.37
Fe _{0.04} -N/C-900	1498.5	831.6	55.5%	1.23	0.98	0.41
Fe _{0.06} -N/C-900	1288.7	826.2	64.1%	0.98	1.02	0.58
Fe _{0.08} -N/C-900	1186.4	891.1	75.1%	0.87	0.91	0.52

Table S1 Physicochemical properties of all the as-prepared samples.

Fig. S3 A) SEM image of $Fe_{0.06}$ -N/C-900 showing the development of pores and N-doped CNTs. B-D) size distribution histograms of CNTs from SEM images in Fig. 3B-D and E-G) particle size distribution from TEM images in Fig. 3F-H for $Fe_{0.04}$ -N/C-900, $Fe_{0.06}$ -N/C-900, and $Fe_{0.08}$ -N/C-900, respectively.

Fig. S4 A) Electrical conductivity cell with four-probe configuration, and B) electrical conductivity vs pressure profiles of Fe_x -N/C-900 and $Fe_{0.06}$ -N/C-900-N₂.

Samples	C 1s (at. %)	Fe 2p (at. %)	N 1s (at. %)	O 1s (at. %)
Fe _{0.06} -N/C-900-N ₂	84.13	0.18	3.93	11.76
N/C-900	88.89	N/A	3.62	7.49
Fe _{0.02} -N/C-900	88.68	0.23	4.36	6.73
Fe _{0.04} -N/C-900	88.06	0.27	5.10	6.57
Fe _{0.06} -N/C-900	87.27	0.37	7.12	5.24
Fe _{0.08} -N/C-900	87.87	0.30	5.94	5.89

VDC . .ı .c ...

Fig. S5 STEM image and EDS spectrum of a selected area along with a table of elemental atomic percentage (inset) of $Fe_{0.06}$ -N/C-900 catalyst.

Materials	Electrolyte	E _{onset} relative to Pt/C	E _{1/2} relative to Pt/C	Current density at 0.15 V (vs. RHE) (mA/cm²)	Ref.
FeNC-20-1000	0.1 M HClO_4	Negative shift ~ 70 mV	Negative shift ~ 57 mV	6.20	1
C-Fe-Z8-Ar	0.1 M HClO_4	Negative shift ~ 70 mV	Negative shift ~ 40 mV	7.40	2
C-2PANI/PBA	0.5 M H ₂ SO ₄	Negative shift ~ 150 mV	Negative shift ~ 100 mV	6.00	3
C-Z8Nc/FePc- 900	0.1 M HClO_4	Negative shift ~ 50 mV	Negative shift ~ 50 mV	5.60	4
C-FeZIF-900- 0.84	0.1 M HClO_4	Negative shift ~ 100 mV	Negative shift ~ 80 mV	5.70	5
5% Fe-N/C	0.5 M H ₂ SO ₄	Negative shift ~ 157 mV	Negative shift ~ 39 mV	5.12	6
NH ₃ -Fe _{0.25} -N- C-900	0.1 M HClO_4	Negative shift ~ 110 mV	Negative shift ~ 100 mV	5.98	7
C-AFC© ZIF-8	0.1 M HClO_4	Negative shift ~ 80 mV	Negative shift ~ 36 mV	5.95	8
Fe _{0.06} -N/C-900	0.1 M HClO ₄	Negative shift ~ 39 mV	Negative shift ~ 33 mV	6.66	This Work

Table S3 Summary of ORR activities of $Fe_{0.06}$ -N/C-900 and recently reported non-precious Fe-N-C catalysts in acidic medium (electrode rotating speed 1600 rpm).

Fig. S6 LSV curves of $Fe_{0.06}$ -N/C-900 and $Fe_{0.06}$ -N/C-900-N₂ with rotation speed 1600 rpm at scan rate of 10 mV/s in O₂-saturated 0.1 M HClO₄.

Fig. S7 A) LSV curves, and B) Nyquist plots (inset: equivalent circuits) of the $Fe_{0.06}$ -N/C-800, $Fe_{0.06}$ -N/C-900, and $Fe_{0.06}$ -N/C-1000 prepared at different pyrolysis temperatures in O₂-saturated 0.1 M HClO₄.

Table S4 EIS parameters of $Fe_{0.06}$ -N/C-T obtained from analysis of Nyquist plot.

Samples	R _s (Ω)	R _{cτ} (Ω)	CPE (mFs ^{1/a})
Fe _{0.06} -N/C-1000	55.6	445.8	3.53
Fe _{0.06} -N/C-900	57.4	345.3	4.31
Fe _{0.06} -N/C-800	56.5	2238.0	1.62

Fig. S8 LSV curves of as-prepared catalysts Fe_x -N/C-900 and Pt/C-TKK in O₂-saturated 0.1 M KOH.

Materials	Precursors	Operation conditions: temperature, backpressure, cathode catalyst loading.	P _{max} (mW/cm²)	l at 0.6 V (mA/cm²)	Ref.
py-Fe-FA/C	FeCl₃, vitamin B19, carbon Vulcan.	80 °C, 1 bar, 6 mg/cm²	330	140	9
Fe-N-C	Iron (II) phthalocyanine with silica template.	60 °C, 3 bar , 2.5 mg/cm ²	105	70	10
Fe-N/CNN3	Fe(ac)2, 2,4,6-Tris(2- pyridyl)-s-triazine.	60 °C, 2 bar, 2.6 mg/cm ²	121	40	11
Fe-NCB	Fe(NO₃)₃, nicarbazin, silica template.	80 °C, 1.5 bar, 4 mg/cm ²	500	520	12
FeCoTETA/C	CoCl ₂ , FeCl ₂ triethylenetetramine, carbon black.	50 °C, 2 bar, 2 mg/cm ²	256	200	13
(CM+PANI)- Fe-C	FeCl ₃ , Cyanamide, Aniline	80 °C, 2 bar, 4 mg/cm ²	940	1100	14
Fe _{0.06} -N/C- 900	ZIF-8, Fe(acac)₃	80 °C, 2 bar, 3.5 mg/cm²	503	564	This work

Table S5 Single cell performances in H_2/O_2 PEMFC of $Fe_{0.06}$ -N/C-900 and recently reported non-precious Fe-N-C catalysts.

Fig. S9 H₂/air fuel cell polarization curves and corresponding power density at 80 °C with various backpressure from 0 to 2 bar (the cathode catalyst loading is 3.5 mg/cm^2 , and membrane of MEA is nafion 212) of Fe_{0.06}-N/C-900.

Fig. S10 LSV curves at before (cycles 0) and after 5000 potential cycles (Cycle 5000) in O_2 -saturated HClO₄ of Fe_{0.02}-N/C-900, Fe_{0.04}-N/C-900 and Fe_{0.08}-N/C-900.

Fig. S11 Cyclic voltammograms of $Fe_{0.06}$ -N/C-900 electrode in N₂-saturated 0.1 M HClO₄ solution at different potential cycles of N = 0, 1000, 5000.

Fig. S12 A) STEM images with elemental mapping for C, N, and Fe, and B) a selected area EDS spectrum with a table of elemental atomic percentages (inset) of $Fe_{0.06}$ -N/C-900 sample after 5000 potential cycles.

References

- 1 T. Liu, P. Zhao, X. Hua, W. Luo, S. Chen and G. Cheng, J. Mater. Chem. A, 2016, 4, 11357–11364.
- 2 X. Wang, H. Zhang, H. Lin, S. Gupta, C. Wang, Z. Tao, H. Fu, T. Wang, J. Zheng, G. Wu and X. Li, *Nano Energy*, 2016, **25**, 110–119.
- 3 X. Wang, L. Zou, H. Fu, Y. Xiong, Z. Tao, J. Zheng and X. Li, *ACS Appl. Mater. Interfaces*, 2016, **8**, 8436–8444.
- 4 R. Zheng, S. Liao, S. Hou, X. Qiao, G. Wang, L. Liu, T. Shu and L. Du, *J. Mater. Chem. A*, 2016, **4**, 7859–7868.
- 5 Y. Deng, Y. Dong, G. Wang, K. Sun, X. Shi, L. Zheng, X. Li and S. Liao, *ACS Appl. Mater. Interfaces*, 2017, **9**, 9699–9709.
- 6 Q. Lai, L. Zheng, Y. Liang, J. He, J. Zhao and J. Chen, ACS Catal., 2017, 7, 1655–1663.
- H. Tan, Y. Li, X. Jiang, J. Tang, Z. Wang, H. Qian, P. Mei, V. Malgras, Y. Bando and Y. Yamauchi,
 Nano Energy, 2017, 36, 286–294.
- Y. Ye, F. Cai, H. Li, H. Wu, G. Wang, Y. Li, S. Miao, S. Xie, R. Si, J. Wang and X. Bao, *Nano Energy*, 2017, 38, 281–289.
- H.-C. Huang, S.-T. Chang, H.-C. Hsu, H.-Y. Du, C.-H. Wang, L.-C. Chen and K.-H. Chen, ACS Sustain.
 Chem. Eng., 2017, 5, 2897–2905.
- 10 L. Osmieri, R. Escudero-Cid, A. H. A. Monteverde Videla, P. Ocón and S. Specchia, *Appl. Catal. B Environ.*, 2017, **201**, 253–265.
- E. Negro, A. H. A. M. Videla, V. Baglio, A. S. Aricò, S. Specchia and G. J. M. Koper, *Appl. Catal. B Environ.*, 2015, **166–167**, 75–83.
- A. Serov, K. Artyushkova, E. Niangar, C. Wang, N. Dale, F. Jaouen, M. T. Sougrati, Q. Jia, S.
 Mukerjee and P. Atanassov, *Nano Energy*, 2015, 16, 293–300.
- 13 H. J. Zhang, X. Yuan, L. Sun, J. Yang, Z. F. Ma and Z. Shao, *Electrochim. Acta*, 2012, **77**, 324–329.
- 14 H. T. Chung, D. A. Cullen, D. Higgins, B. T. Sneed, E. F. Holby, K. L. More and P. Zelenay, *Science* (80-.)., 2017, **357**, 479–484.