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Page S21. Fig. S28: GPC profile of the first block of terpolymer from Table 4, Entry 1.

Page S22. Fig. S29: 1H DOSY spectrum (600 MHz, CDCl3, 298K) of the co-polymer from Table 

3, Entry 3.

Page S23. Fig. S30: 1H DOSY spectrum (600 MHz, CDCl3, 298K) of the ter-polymer from Table 

4, Entry 1.
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Experimental Section

Materials and Methods.

Generals. All manipulations of air- and/or water-sensitive compounds were carried out under a 

dry nitrogen atmosphere using a Braun Labmaster glove-box or standard Schlenk line techniques. 

Glassware and vials used in the polymerization were dried in an oven at 120 °C overnight and 

exposed three times to vacuum–nitrogen cycles.

Reagents and Solvents. Benzene, hexane and toluene (Sigma-Aldrich) were distilled under 

nitrogen over sodium/benzophenone. The aluminum precursor AlMe3 was purchased from Sigma-

Aldrich and was used as received. Deuterated solvents were dried over molecular sieves. 

Cyclohexene oxide (CHO), ε-caprolactone (ε-CL), β-butyrolactone (β-BL) were purchased from 

Sigma-Aldrich and freshly distilled over CaH2. L-lactide (L-LA) was purchased from Sigma-

Aldrich and dried in vacuo over P2O5 for 72 h, and afterward stored at −20 °C in a glovebox. iPrOH 

was purified by distillation over sodium. All other chemicals were commercially available and used 

as received unless otherwise stated. The synthesis of complex 1 was performed according the 

published procedure.[1]

NMR analysis. NMR spectra were recorded on Bruker Advance 250, 300, 400 and 600 MHz 

spectrometers at 25 °C, unless otherwise stated. Chemical shifts (δ) are expressed as parts per 

million and coupling constants (J) in hertz. 1H NMR spectra are referenced using the residual 

solvent peak at δ = 7.16 for C6D6 and δ = 7.27 for CDCl3. 13C NMR spectra are referenced using 

the residual solvent peak at δ = 128.06 for C6D6 and δ = 77.23 for CDCl3. 

Thermal analysis. Melting points (Tm) and Glass transition temperature (Tg) of the polymers were 

measured by differential scanning calorimetry (DSC) using a DSC 2920 apparatus manufactured 

by TA Instruments under a nitrogen flux of 50 mL min−1 with a heating and cooling rate of 10 °C 

min−1 in the range −10 to 200 °C. All calorimetric data were reported for the second heating cycle.

MALDI-ToF-MS Analysis. Mass spectra were acquired using a Bruker solariX XR Fourier 

transform ion cyclotron resonance mass spectrometer (Bruker Daltonik GmbH, Bremen, Germany) 

equipped with a 7 T refrigerated actively-shielded superconducting magnet (Bruker Biospin, 

Wissembourg, France). The samples were ionized in positive ion mode using the MALDI ion 

source. Samples were dissolved in THF (1 mg/mL), 2,5-dihydroxybenzoic acid (DHBA) was used 
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as the matrix material, and potassium trifluoroacetate was added to facilitate ionization. The mixed 

solution was hand-spotted on a stainless steel MALDI target and left to dry.

References.

[1] F. Isnard, M. Lamberti, L. Lettieri, I. D’auria, K. Press, R. Troiano and M. Mazzeo, Dalton 

Trans., 2016, 45, 16001-16010.
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Figure S1. 1H NMR spectrum (C6D6, 400 MHz, 298 K) of the alcoholysis of 1.
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Figur

e S2. 1H NMR spectrum (C6D6, 400 MHz, 298 K) of the isopropoxide derivative of 1 synthesized 

from Al(OiPr)3.
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Figure S3. 1H NMR spectrum (C6D6, 300 MHz, 298 K) of the propagating species of 1-PHB. Up: 

After addition of β-BL, showing the increase of the signal of the polymer PHB.

Figure S4. 13C NMR spectrum (63 MHz, CDCl3, 298 K) of the atactic PHB (run 5 of Table 1). 
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Figure S5. 1H NMR spectrum (250 MHz, CDCl3, 298 K) of ε-CL/L-LA copolymer.

Figure S6. 13C NMR spectrum (75 MHz, CDCl3, 298 K) of ε-CL/L-LA copolymer.
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Figure S7. DSC thermogram of PCL/PLA copolymer.
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Figure S8. WAXD analysis of the PCL/PLA copolymer.
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Figure S9. Plot of ln([M]0/[M]t) vs time depicting a reaction order of unity with respect to L-LA 

(black solid squares) and ε-CL (red solid circles) concentration (R2 = 0.993 for L-LA and R2 = 

0.991 for ε-CL).

Figure S10. 1H NMR spectrum (400 MHz, CDCl3, 298 K) of poly[HB-co-CL].
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Figure S11. 13C NMR spectrum (63 MHz, CDCl3, 298 K) of poly[HB-co-CL].

Figure S12. DSC thermogram of PHB/PLA copolymer.
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gure S13. WAXD analysis of PHB/PLA copolymer.
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Figure S14. Plot of ln([M]0/[M]t) vs time depicting a reaction order of unity with respect to L-LA 

(black solid squares and β-BL (red solid circles) concentration. (kapp = 0.0147 min-1 R2 = 0.9968 

for L-LA and kapp = 0,00134 R2 = 0.9916 for poly- β-BL).
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Figure S15. 1H NMR spectrum (250 MHz, CDCl3, 298 K) of co-polymer of β-BL and L-LA 

obtained in run 3 of Table 2.

Figure S16. 13C NMR spectrum (75 MHz, CDCl3, 298 K) of poly[LA-co-HB] obtained in entry 3 

of Table 2.
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Figure S17. 1H NMR spectrum (400 MHz, CDCl3, 298 K) of co-polymer of CHO and ε-CL.

Figure S18. 1H NMR spectrum (250 MHz, CDCl3, 298 K) of co-polymer of CHO and L-LA.
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Figure S19. 1H NMR spectrum (300 MHz, CDCl3, 298 K) of co-polymer of CHO and β-BL.

Figure S20. 1H NMR spectrum (250 MHz, CDCl3, 298 K) of poly(cyclohexene succinate-co-

caprolactone).
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Figure S21. 1H NMR spectrum (400 MHz, CDCl3, 298 K) of poly(cyclohexene succinate-co-

lactide).

Figure S22. 1H NMR spectrum (400 MHz, CDCl3, 298 K) of poly(cyclohexene succinate-co-

butyrolactone).
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Figure S23. GPC profile of the PCHO block from Table 3, Entry 1. PCHO, check at 70% 

conversion of CHO, no PCL block.

Figure S24. GPC profile of PCHO/PCL polymer from Table 3, Entry 1.
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Figure S25. GPC profile of PCHO/PLA from Table 3, Entry 2.

Figure S26. GPC profile of PCHO/PHB from Table 3, Entry 3.
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Figure S27. GPC profile of terpolymer from Table 4, Entry 1.

Figure S28. GPC profile of the first block of terpolymer from Table 4, Entry 1: poly(cyclohexene 

succinate) block, check at 57% conversion of SA, no PCL block.
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Figure S29. 1H DOSY spectrum (600 MHz, CDCl3, 298K) of the co-polymer from Table 3, Entry 

3.
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Figure S30. 1H DOSY spectrum (600 MHz, CDCl3, 298K) of the ter-polymer from Table 4, Entry 

1.


