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l. General Information

Materials: Chemicals, such as Cesium carbonate (Cs,COs3, 99.9%), Lead(ll) iodide (Pbl,, 99.999%),
Lead(ll) bromide (PbBr,, 99.999%) and Lead(ll) chloride (PbCl,, 99.999%), 1-octadecene (ODE, 90%),
oleic acid (technical grade, 90%), oleylamine (80-90%), bromochloromethane, 2-bromopropane, t-
butyl bromide, thiols, 1,2,3,4-tetrahydroisoquinolines, and phosphite esters were all used as received
from Sigma-Aldrich, TCl and ACROS ORGANICS. Solvents, such as cyclohexane (anhydrous grade, 95%),
dichloromethane (anhydrous grade, 99.5%), toluene (HPLC, 99.9%), and THF (99.0%) were purchased
from Sigma-Aldrich and used without further purification. 2-Phenyl-1,2,3,4-tetrahydroisoquinoline,!
2-(4-fluorophenyl)-1,2,3,4-tetrahydroisoquinoline,* 2-(4-bromophenyl)-1,2,3,4-tetrahydroiso-
quinoline,! 2-(4-methoxyphenyl)-1,2,3,4-tetrahydroisoquinoline,* 2-(naphthalen-1-yl)-1,2,3,4-
tetrahydroisoquinoline,>  6-chloro-2-phenyl-1,2,3,4-tetrahydroisoquinoline,® ~ 7-bromo-2-phenyl-
1,2,3,4-tetrahydroisoquinoline,!  6,7-dimethoxy-2-phenyl-1,2,3,4-tetrahydroisoquinoline,  N,N-
dimethylaniline,® and 1-phenylpyrrolidine* were synthesized and characterized by following the
reported papers.

Il. Characterization Methods

Nuclear magnetic resonance (NMR): 'H NMR, 3C NMR spectra were recorded on a Bruker AV500 (500
MHz) or AV-111400 (400 MHZ) spectrometer. Chemical shifts were calibrated using residual
undeuterated solvent as an internal reference (CDCls, & 7.26 ppm for *H NMR and & 77.2 ppm for *3C
NMR). Multiplicity was indicated as follows: s (singlet), d (doublet), t (triplet), q (quartet), dd (doublet
of doublets), ddd (doublet of doublet of doublets), m (multiplet).

Gas chromatography-mass spectrometry (GC-MS): GC-MS analysis was performed on Agilent 7820A
with 5977E MSD.

White light LEDs: The white LED strips (3 meter, 27 W or 1 meter, 9 W) were purchased from Inwares
Pte Ltd (Singapore).

Thermal Conductivity Detector (TCD): H, analysis was performed on Agilent 7890A with TCD detector.

UV-Visible Absorbance (UV-vis), Photoluminescence (PL) and Photochemical Quantum Yield: The
absorbance spectra of the solutions were obtained by measuring the transmitted intensity of light
from an Ocean Optics HL-2000 tungsten halogen lamp, using an Ocean Optics Flame-T spectrometer.
The photoluminescence spectra and photochemical quantum yield were obtained by photo-exciting
the samples with a Spectra-Physics 100 mW 405 nm diode laser, and measuring the emission using a
calibrated Ocean Optics Flame-T spectrometer.

Transmission electron microscopy (TEM) and Energy Dispersive X-Ray Spectrometer (EDX): TEM
images were recorded using JEOL JEM-3011 microscope operated at 300kV. This system is equipped
with an Oxford Instruments INCA x-sight EDX.

Elemental analysis: Elemental analysis was conducted with Agilent ICP-MS system.
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lll. Experimental Details

CsPbX;3 (X=1, Br and Cl) perovskite synthesis: Perovskite nanocrystals were synthesized using previous
reported procedures.® Preparation of Cs-oleate: Cs,CO3 (0.163 g, 0.5 mmol) was loaded into 50 mL
three-neck flask along with 1-octadecene (ODE) (8 mL) and oleic acid (OA) (0.5 mL), and the mixture
was dried under vacuum at 120 °C for 30 minutes. The solution was heated to 150 °C under N; for 10
minutes, and then kept at 100°C before injection. PbX; (0.188 mmol), such as Pbl, (0.087 g), PbBr;
(0.069 g), PbCl; (0.052 g), and ODE (5 mL) were loaded into a 25 mL three-neck flask and dried under
vacuum at 120 °Cfor 1 h. Dried oleylamine (OLA) (0.5 mL) and OA (0.5 mL) were added into the mixture
at 120 °C under N,. After complete solubilization of the PbX;, the temperature was raised to 170 °C
and the Cs-oleate solution (0.4 mL, 0.125 M in ODE, prepared as described above) was quickly injected.
After 10 s, the reaction mixture was cooled in an ice-water bath. After centrifugation, the nanocrystals
were precipitated from solution, and the supernatant was discarded and the particles were washed
two times using ODE. After centrifugation, perovskite nanoparticles were re-dispersed in anhydrous
cyclohexane (5 mL) for further use.

General procedure for S—S bond formation: Using 2a as a representative example. To a vial equipped
with an oven-dried magnetic stir bar was added CsPbBr; (0.006 M in cyclohexane, 330 pL, 0.002 mmol),
the cyclohexane was removed by vacuum, then CH,Cl, (4 mL) and thiophenol (21 uL, 0.2 mmol, 1.0
equiv) were added. The vial was opened to air and irradiated with white LED strip (3 m, 27 W) while
stirring for 6 h. The reaction mixture was then filtered through a short pad of silica with CH,Cl; (20 mL)
and concentrated in vacuum. The residue was subjected to column chromatography isolation on silica
gel by elution with hexane to give diphenyl disulfide 2a (20.7 mg) in 95% yield as a white solid.

S<
iy

2a

Diphenyl disulfide (2a):®* *H NMR (500 MHz, CDCl3) § 7.52-7.49 (m, 4H), 7.33-7.29 (m, 4H), 7.25-7.21
(m, 2H); 3C NMR (125 MHz, CDCl3) 6§ 137.2, 129.2, 127.6, 127.3. ICP-MS analysis showed that 0.5 ppm
Cs and 0.3 ppm Pb were detected.
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2b

Bis(4-methylphenyl) disulfide (2b):® Following the general procedure (12 h), CsPbBr3 (0.006 M, 330
pL, 0.002 mmol, 1 mol%), 4-methylbenzenethiol 1b (24.8 mg, 0.2 mmol, 1.0 equiv), in CH,Cl, (4.0 mL)
were employed to give the product 2b (22.4 mg) in 91% yield as a white solid. *H NMR (500 MHz, CDCls)
67.39(d, J=10Hz, 4H), 7.11 (d, J = 10 Hz, 4H), 2.33 (s, 6H); 3C NMR (125 MHz, CDCl5) § 137.5, 134.0,
129.9, 128.6, 21.1.
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Bis(4-fluorophenyl) disulfide (2c):” Following the general procedure (12 h), CsPbBrs (0.006 M, 330 pL,
0.002 mmol, 1 mol%), 4-fluorothiophenol 1c (21 uL, 0.2 mmol, 1.0 equiv), in CH,Cl; (4.0 mL) were
employed to give the product 2¢ (23.4 mg) in 92% vyield as a white solid. *H NMR (500 MHz, CDCls) &
7.46-7.42 (m, 4H), 7.03-6.99 (m, 4H); 3C NMR (125 MHz, CDCl3) § 162.7 (d, J = 247.5 Hz), 132.2 (d, J =
2.5Hz),131.4 (d, /= 8.8 Hz), 116.4 (d, J = 22.5 Hz); °F NMR (376 MHz, CDCl5) 6 -113.48 (s, 2F).

OMe
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2d

MeO :

Bis(4-(methylthio)phenyl) disulfide (2d):® Following the general procedure (12 h), CsPbBrs (0.006 M,
330 pL, 0.002 mmol, 1 mol%), 4-methoxythiophenol 1d (25 pL, 0.2 mmol, 1.0 equiv), in CH,Cl, (4.0 mL)
were employed to give the product 2d (25.8 mg) in 93% yield as a white solid. *H NMR (500 MHz, CDCls)
& 7.40 (d, J = 10.0 Hz, 4H), 6.84 (d, J = 10.0 Hz, 4H), 3.80 (s, 6H); *C NMR (125 MHz, CDCls) & 160.0,
132.7,128.5,114.7,55.4.

S WS

Bis(2-benzothiazolyl) disulfide (2e):° Following the general procedure (12 h), CsPbBr; (0.006 M, 330
pL, 0.002 mmol, 1 mol%), 2-mercaptobenzothiazole 1e (33.5 mg, 0.2 mmol, 1.0 equiv), in CH,Cl, (4.0
mL) were employed to give the product 2e (28.6 mg) in 86% yield as a white solid. *"H NMR (500 MHz,
CDCl5) 6 7.94 (d, J=5.0 Hz, 4H), 7.77 (d, J = 10.0 Hz, 2H), 7.47 (td, /= 10.0, 1.2 Hz, 2H), 7.36 (td, /= 7.6,
1.3 Hz, 2H); *C NMR (125 MHz, CDCl;) 6§ 167.9, 154.5, 136.1, 126.6, 125.3, 122.7, 121.3.

.S
©/\S

2f

Bis(phenylmethyl) disulfide (2f):® Following the general procedure (12 h), CsPbBr3 (0.006 M, 330 pL,
0.002 mmol, 1 mol%), benzyl mercaptan 1f (24 uL, 0.2 mmol, 1.0 equiv), in CH,Cl; (4.0 mL) were
employed to give the product 2f (22.1 mg) in 90% yield as a white solid. 'H NMR (500 MHz, CDCl3) &
7.35-7.23 (m, 10H), 3.61 (s, 4H); 3C NMR (125 MHz, CDCls) § 137.5, 129.5, 128.6, 127.5, 43.4.
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Dicyclohexyl disulfide (2g):® Following the general procedure (12 h), CsPbBr3 (0.006 M, 330 uL, 0.002
mmol, 1 mol%), cyclohexanethiol 1g (25 uL, 0.2 mmol, 1.0 equiv), in CH,Cl; (4.0 mL) were employed
to give the product 2g (21.2 mg) in 90% vyield as a colorless oil. *H NMR (500 MHz, CDCls) § 2.70-2.65
(m, 2H), 2.06-2.02 (m, 4H), 1.80-1.76 (m, 4H), 1.63-1.59 (m, 2H), 1.36-1.19 (m, 10H); 3C NMR (125
MHz, CDCl5) 6 50.1, 33.0, 26.2, 25.8.

/\/\/\S/S\/\/\/
2h

Dihexyldisulfide (2h): Following the general procedure (12 h), CsPbBrs (0.006 M, 330 pL, 0.002 mmol,
1 mol%), 1-heptanethiol 1h (32 uL, 0.2 mmol, 1.0 equiv), in CH,Cl; (4.0 mL) were employed to give the
product 2h (22.4 mg) in 96% yield as a colorless oil. *H NMR (500 MHz, CDCls) § 2.68 (t, J = 10.0, 4H),
1.70-1.64 (m, 4H), 1.41-1.35 (m, 4H), 1.32-1.28 (m, 8H), 0.89 (t, J = 5.0, 6H); 3C NMR (125 MHz, CDCls)
639.3,31.5,29.3, 28.3, 22.6, 14.1.

.S
S j<
2i
Di-tert-butyl disulfide (2i):® Following the general procedure (12 h), CsPbBrs (0.006 M, 330 uL, 0.002
mmol, 1 mol%), 2-methyl-2-propanethiol 1i (23 pL, 0.2 mmol, 1.0 equiv), in CH,Cl, (4.0 mL) were

employed to give the product 2i (13.5 mg) in 76% yield as a colorless oil. *H NMR (500 MHz, CDCl3) &
1.31 (s, 9H); 3C NMR (125 MHz, CDCls) 6 30.5, 46.1.

Selective synthesis of unsymmetric disulfide 2j:

SH CsPbBr; (1 mol%) ©/S\s/\/\/\ s /©
. P UaN + ~s
HS CH,Cly, white LEDs, rt, air, 12 h ©/

1a 1h 2j 2a
1.5 equiv 71% 12%

Procedure: To a vial equipped with an oven-dried magnetic stir bar was added CsPbBr; (0.006 M in
cyclohexane, 330 pL, 0.002 mmol), the cyclohexane was removed under vacuum, and replaced by
CH,Cl; (4 mL). Then 1h (0.3 mmol, 1.5 equiv) was added, and the mixture solution was stirred in dark
for 0.5 h. After that, 1a (0.2 mmol, 1.0 equiv) was added to the vial. The vial was opened to air and
irradiated with white LED strip (3 m, 27 W) while stirring for 12 h. The reaction mixture was
concentrated in vacuum, and subjected to GC-MS and NMR analyses. The residue was isolated by
column chromatography on silica gel to give hexyl phenyl disulfide 2j in 71% vyield, and diphenyl
disulfide 2ain 12% yield. Product 2j as a colorless oil, *H NMR (500 MHz, CDCl;) § 7.53 (d, J = 10.0, 2H),
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7.32(t,J = 10.0, 2H), 7.21 (t, J = 10.0, 1H), 2.74 (t, J = 10.0, 2H), 1.63-1.69 (m, 2H), 1.33-1.39 (m, 2H),
1.22-1.31 (m, 4H), 0.87 (t, J = 5.0, 3H); 3C NMR (125 MHz, CDCls) & 137.8, 129.0, 127.5, 126.7, 39.1,
31.5,28.9, 28.2, 22.6, 14.1.

Selective synthesis of unsymmetric disulfide 2k:

N

N CsPbBrs (1 mol%) N s% N s
N»—8H + HS‘% N\ & ; <

C[s CH,Cl,, white LEDS, tt, air, 12 h @[st . S>—s s

1e 1i 2k 2e
1.5 equiv 72% <2%

Procedure: To a vial equipped with an oven-dried magnetic stir bar was added CsPbBr; (0.006 M in
cyclohexane, 330 uL, 0.002 mmol, 1 mol%), the cyclohexane was removed under vacuum, and
replaced by CH,Cl; (3 mL). Then 1e (0.2 mmol, 1.0 equiv) was dissolved in 1 mL CH,Cl;, which was
added simultaneously with 1i (0.3 mmol, 1.5 equiv) to the vial. The vial was opened to air and
irradiated with white LED strip (3 m, 27 W) while stirring for 12 h. The reaction mixture was
concentrated in vacuum, and subjected to GC-MS and NMR analyses. After that, the residue was
isolated by column chromatography on silica gel to give 2-(tert-butyldisulfanyl)benzothiazole 2k in
72% yield.
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Fig. S1 Time-Scale Study of Selective Synthesis of Unsymmetrical Disulfide 2k. The heterocoupling
product 2k reached 72% yield after 7 hours, while only less than 2% of homocoupling product 2e was
observed.
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2-(tert-Butyldisulfanyl)benzothiazole (2k):° Product 2k (36.7 mg) in 72% yield as a white solid. *H NMR
(500 MHz, CDCl5) 6 7.85 (d, J = 10.0 Hz, 1H), 7.77 (d, /= 5.0 Hz, 1H), 7.42 (t, J = 10.0 Hz, 1H), 7.31 (t, J
=10.0 Hz, 1H), 1.42 (s, 9H); 3C NMR (125 MHz, CDCls) & 174.4, 154.9, 135.8, 126.2, 124.6,122.1, 121.1,
50.3, 29.9.
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Fig. S2 Crude 'H NMR of synthesis of unsymmetric disulfide 2k.

S CH,Cl,, white LEDs, rt, air, 12 h
11 1i 2
1.5 equiv 68%

N-N CsPbBr3 (1 mol%) _N S
7B\ N /
A Mgy o+ Hs s <

2-[(1,1-Dimethylethyl)dithio]-5-methyl-1,3,4-thiadiazole (21):1° Follow the procedure for 2k. To a vial
equipped with an oven-dried magnetic stir bar was added CsPbBrs; (0.006 M in cyclohexane, 330 uL,
0.002 mmol, 1 mol%), the cyclohexane was removed under vacuum, and replaced by CHxCl; (3 mL).
Then 11 (0.2 mmol, 1.0 equiv) was dissolved in 1 mL CH,Cl,, which was added simultaneously with 1i
(0.3 mmol, 1.5 equiv) to the vial. The vial was opened to air and irradiated with white LED strip (3 m,
27 W) while stirring for 12 h. The reaction mixture was concentrated in vacuum, and subjected to GC-
MS and NMR analyses. After that, the residue was isolated by column chromatography on silica gel to
give product 21 (30.0 mg) in 68% yield as a white solid. *H NMR (400 MHz, CDCl3) & 2.71 (s, 3H), 1.38
(s, 9H); *C NMR (100 MHz, CDCls) § 174.1, 166.5, 50.6, 29.8, 15.9.
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Fig. S3 Crude *H NMR of synthesis of unsymmetric disulfide 2I.

Oxidation of secondary alcohols; proof of thiyl radical generation

OH SN Sgy (1 equiv) 0
CsPbBr3 (1 mol%)
CH,Cl,, white LEDs, rt, Ar balloon, 12 h
0.2 mmol 34% yield

To achieve conversion of secondary alcohols to carbonyl compounds, we intercepted the thiol radical
generated on the CsPbBr; with phenylethanol containing abstractable C—H hydrogen atoms. The thiol-
loaded perovskites were employed to oxidize 1-phenylethanol to ketone. Our unoptimized
preliminary data show that the ketone product was obtained in 34% yield under Ar atmosphere. This
result supports the formation of the thiyl radical, which behaves like a hydrogen-atom transfer reagent
for the oxidation of alcohols.

Procedure: To a vial equipped with an oven-dried magnetic stir bar was added CsPbBr; (0.006 M in
cyclohexane, 330 pL, 0.002 mmol), the cyclohexane was removed under vacuum, and replaced by
CH,Cl; (4 mL), then 1-heptanethiol (28.4 uL, 0.2 mmol, 1.0 equiv.) was added. The mixture was
protected by argon balloon and stirred for another 0.5 h in dark, then phenylethanol (24 uL, 0.2 mmol,
1.0 equiv) was added to the reaction mixture. The vial was irradiated with white LED strip (3 m, 27 W)
while stirring for 12 h. The reaction mixture was concentrated in vacuum, the residue was subjected
to column chromatography on silica gel to give 1-phenylethanone in 34% yield. The *H NMR and *3C
NMR data matches those reported in the literature.
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Cross-dehydrogenative coupling between tertiary amines and phosphite esters:

Using 5a as a representative example. To a vial equipped with an oven-dried magnetic stir bar was
added CsPbBr; (0.006 M in cyclohexane, 165 uL, 0.001 mmol), the cyclohexane was removed by
vacuum, then toluene (1.5 mL), 2-phenyl-1,2,3,4-tetrahydroisoquinoline 3a (20.9 mg, 0.1 mmol, 1.0
equiv) and diphenyl phosphite easter 4a (80%, 26 uL, 0.11 mmol, 1.1 equiv) were added. The vial was
irradiated with white LED strip (3 m, 27 W) while stirring for 4 h. The reaction mixture was
concentrated in vacuum. The residue was subjected to column chromatography isolation on silica gel
by elution with hexane/EA=6:1 to give Diphenyl 2-phenyl-1,2,3,4-tetrahydroisoquinolin-1-
ylphosphonate 5a (42.3 mg) in 96% yield as a white solid.

Table S1. Condition optimization for CsPbBr; perovskite-catalyzed cross-dehydrogenative coupling
between tertiary amines and phosphite esters®

©® . PhO—(IF);—H CsPbBr (1 mol%) .
N<ph OPh  toluene, white LEDs, air, rt, 4 h PhO:P\
PhO™ S0
3a 4a 5a
entry deviation from the standard condition yield of 5a (%)°
1 none 96
2 oxygen-free (freeze-pump-thaw) 20
3 THF instead of toluene 95
4 CsPbBr; powder instead of perovskite nanoparticle <10
5 no CsPbBrs; or no light <5
6 add 2.5 equiv of TEMPO 64
7 add 2.5 equiv of BHT 84

@Standard reaction conditions: 3a (0.1 mmol), 4a (0.12 mmol, 1.1 equiv), CsPbBr; (1 mol%),
and toluene (1.5 mL) at room temperature under white LED for 4 h. °NMR vyields with 1,3,5-

trimethoxybenzene as the internal standard.

5a
Diphenyl 2-phenyl-1,2,3,4-tetrahydroisoquinolin-1-ylphosphonate (5a):!2 *H NMR (500 MHz, CDCls)
67.51(d,J=7.4Hz, 1H), 7.27-7.00 (m, 15H), 6.87-6.82 (m, 3H), 5.59 (d, J = 20.0 Hz, 1H), 4.06 (ddd, J =
13.1, 8.6, 4.9 Hz, 1H), 3.68-3.63 (m, 1H), 3.08-2.98 (m, 2H); 3C NMR (125 MHz, CDCls) 6 150.99 (d, J =
10.5 Hz), 150.54 (d, J = 11.1 Hz), 149.46 (d, J = 6.8 Hz), 136.95 (d, J = 6.0 Hz), 129.82, 129.74, 129.63,
129.46,129.24 (d,J=2.8 Hz), 128.61 (d, J=4.9 Hz), 128.16 (d, /=3.7 Hz), 126.42 (d, /= 2.8 Hz), 125.26,
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125.04, 120.86 (d, J = 4.0 Hz), 120.59 (d, J = 4.2 Hz), 119.35, 115.68, 59.37 (d, J = 160.5 Hz), 44.21,
26.83; 3P NMR (202 MHz, CDCl3) & 15.33. ICP-MS analysis showed that 1.3 ppm Cs and 1.0 ppm Pb
were detected.

N

ol )
P

EtO” O

5b

Diethyl (2-phenyl-1,2,3,4-tetrahydroisoquinolin-1-yl)phosphonate (5b):!? Following the general
procedure, 2-phenyl-1,2,3,4-tetrahydroisoquinoline 3a (20.9 mg, 0.1 mmol, 1.0 equiv) and Diethyl
phosphite easter 4b (98%, 15 uL, 0.11 mmol, 1.1 equiv) in toluene (1.5 mL) were employed to give the
product 5b (24.2 mg) in 70% yield as a white solid. 'H NMR (500 MHz, CDCls) 6 7.37 (d, J = 7.0 Hz, 1H),
7.26-7.14 (m, 5H), 6.98 (d, J = 8.3 Hz, 2H), 6.79 (t, / = 7.3 Hz, 1H), 5.19 (d, J = 20.0 Hz, 1H), 4.12-3.85
(m, 5H), 3.65-3.61 (m, 1H), 3.11-2.96 (m, 2H), 1.24 (t, J = 7.1 Hz, 3H), 1.14 (t, J = 7.1 Hz, 3H); 3C NMR
(125 MHz, CDCl3) 6 149.60 (d, J = 5.6 Hz), 136.63 (d, /= 5.5 Hz), 130.88 , 129.32, 128.93 (d, J = 2.7 Hz),
128.33 (d, J = 4.7 Hz), 127.62 (d, J = 3.5 Hz), 126.05 (d, J = 2.9 Hz), 118.69, 115.04,63.47 (d, /=7.2
Hz), 62.52 (d, /= 7.8 Hz), 59.03 (d, / = 159.0 Hz), 43.71, 26.98 , 16.63 (d, J = 5.4 Hz), 16.56 (d, J = 5.8
Hz); 3P NMR (202 MHz, CDCls) 6 22.77.

N
Pro. \©
. _P.

Pro” S0

5¢c

Diisopropyl! (2-phenyl-1,2,3,4-tetrahydroisoquinolin-1-yl)phosphonate (5c¢):!? Following the general
procedure, 2-phenyl-1,2,3,4-tetrahydroisoquinoline 3a (20.9 mg, 0.1 mmol, 1.0 equiv) and Diisopropyl
phosphite easter 4c (98%, 18 L, 0.11 mmol, 1.1 equiv) in toluene (1.5 mL) were employed to give the
product 5¢ (29.1 mg) in 78% yield as a white solid. 'H NMR (500 MHz, CDCl3) § 7.40 (d, J = 7.1 Hz, 1H),
7.24-7.12 (m, 5H), 6.96 (d, J = 8.3 Hz, 2H), 6.77 (t, J = 7.2 Hz, 1H), 5.14 (d, J = 21.1 Hz, 1H), 4.66-4.58
(m, 2H), 4.08-4.03 (m, 1H), 3.68-3.63 (m, 1H), 3.06-2.94 (m, 2H), 1.29 (dd, /= 9.1, 6.2 Hz, 6H), 1.16 (d,
J=6.2 Hz, 3H), 0.95 (d, J = 6.2 Hz, 3H); **C NMR (125 MHz, CDCl3) 6 149.75 (d, J = 6.6 Hz), 136.63 (d, J
=5.5Hz), 131.13,129.20, 128.91 (d, J = 2.7 Hz), 128.65 (d, / = 4.6 Hz), 127.48 (d, J = 3.6 Hz), 125.83 (d,
J=2.8Hz), 118.54, 115.31, 72.42 (d, J = 7.9 Hz), 71.08 (d, J = 8.1 Hz), 59.03 (d, J = 160.9 Hz), 43.74,
26.81,24.79 (d, J=2.8 Hz), 24.35 (d, J = 3.2 Hz), 23.95 (d, J = 5.8 Hz), 23.53 (d, J = 5.6 Hz); 3'P NMR (202
MHz, CDCls) § 21.44.

5d
Dibenzyl (2-phenyl-1,2,3,4-tetrahydroisoquinolin-1-yl)phosphonate (5d):'* Following the general
procedure, 2-phenyl-1,2,3,4-tetrahydroisoquinoline 3a (20.9 mg, 0.1 mmol, 1.0 equiv) and Dibenzyl
phosphite easter 4d (95%, 30 mg, 0.11 mmol, 1.1 equiv) in toluene (1.5 mL) were employed to give
the product 5d (32.9 mg) in 70% yield as a white solid. *H NMR (500 MHz, CDCls) & 7.38-7.15 (m, 16H),
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7.01(d, J = 8.2 Hz, 2H), 6.83 (t, J = 7.2 Hz, 1H), 5.32 (d, J = 19.6 Hz, 1H), 5.06-4.79 (m, 4H), 4.06 (ddd, J
=12.9, 8.5, 4.7 Hz, 1H), 3.69-3.64 (m, 1H), 3.14-2.99 (m, 2H); 3C NMR (125 MHz, CDCls) & 149.44 (d, J
=5.5Hz), 136.71 (d, J = 5.8 Hz), 136.58 (d, J = 5.9 Hz), 136.46 (d, J = 6.0 Hz), 130.61, 129.40, 129.01 (d,
J=2.7 Hz), 128.60 (d, J = 10.6 Hz), 128.46, 128.41, 128.37 (d, J = 2.2 Hz), 128.21 (d, J = 6.0 Hz), 127.75
(d, J = 3.5 Hz), 126.18 (d, J = 3.0 Hz), 118.85, 115.11, 68.82 (d, J = 7.3 Hz), 67.95 (d, J = 7.8 Hz), 59.24
(d, J = 158.0 Hz), 43.80, 27.04(s); 3'P NMR (202 MHz, CDCl3) & 23.58.

5e
Diphenyl (2-(4-fluorophenyl)-1,2,3,4-tetrahydroisoquinolin-1-yl)phosphonate (5e):'?> Following the
general procedure, 2-(4-fluorophenyl)-1,2,3,4-tetrahydroisoquinoline 3b (22.7 mg, 0.1 mmol, 1.0
equiv) and diphenyl phosphite easter 4a (80%, 26 uL, 0.11 mmol, 1.1 equiv) in toluene (1.5 mL) were
employed to give the product 5e (37.7 mg) in 82% yield as a white solid. *H NMR (500 MHz, CDCls) 6
7.53 (d, J=7.4 Hz, 1H), 7.27 — 6.89 (m, 17H), 5.45 (d, J = 20.5 Hz, 1H), 4.06 (ddd, J = 13.3, 8.7, 5.1 Hz,
1H), 3.59-3.54 (m, 1H), 3.03-2.94 (m, 2H); **C NMR (125 MHz, CDCls) 6§ 157.10 (d, J = 238.3 Hz), 151.03
(d,/=10.4Hz),150.49 (d, J=11.0 Hz), 146.20 (dd, /= 7.8, 2.0 Hz), 136.79 (d, J = 5.9 Hz), 129.85, 129.68,
129.46, 129.35 (d, J = 2.7 Hz), 128.64 (d, J = 4.8 Hz), 128.20 (d, J = 3.8 Hz), 126.50 (d, J = 3.1 Hz), 125.31,
125.10,120.80 (d, /= 4.2 Hz), 120.52 (d, /= 4.1 Hz), 117.77 (d, J= 7.6 Hz), 115.87 (d, J = 22.1 Hz), 59.85
(d, J=160.3 Hz), 45.17, 26.49; *'P NMR (202 MHz, CDCl;) § 15.02; **F NMR (376 MHz, CDCls) 6 -125.009.

5f

Diphenyl (2-(4-bromophenyl)-1,2,3,4-tetrahydroisoquinolin-1-yl)phosphonate (5f):'? Following the
general procedure, 2-(4-bromophenyl)-1,2,3,4-tetrahydroisoquinoline 3c (28.7 mg, 0.1 mmol, 1.0
equiv) and diphenyl phosphite easter 4a (80%, 26 uL, 0.11 mmol, 1.1 equiv) in toluene (1.5 mL) were
employed to give the product 5f (45.8 mg) in 88% yield as a white solid. *"H NMR (500 MHz, CDCl;) 6
7.49 (d, J = 7.6 Hz, 1H), 7.34-6.98 (m, 13H), 6.90-6.84 (m, 4H), 5.50 (d, / = 19.1 Hz, 1H), 4.01 (ddd, J =
12.8, 8.3, 4.8 Hz, 1H), 3.60-3.55 (m, 1H), 3.15-2.96 (m, 2H); 3C NMR (125 MHz, CDCl5) & 150.87 (d, J =
10.6 Hz), 150.45 (d, J = 11.3 Hz), 148.39 (d, J = 6.1 Hz), 136.73 (d, J = 5.7 Hz), 132.18, 129.87, 129.71,
129.48,129.19 (d, J=2.9 Hz), 128.61 (d, J=5.0 Hz), 128.37 (d, J = 3.8 Hz), 126.58 (d, J = 3.0 Hz), 125.35,
125.17, 120.76 (d, J = 4.2 Hz), 120.46 (d, J = 4.2 Hz), 117.01, 111.33, 59.32 (d, J = 160.7 Hz), 44.31,
26.96; 3P NMR (202 MHz, CDCl3) 6 14.85.

59
Diphenyl (2-(4-methoxyphenyl)-1,2,3,4-tetrahydroisoquinolin-1-yl)phosphonate (5g):'*> Following
the general procedure, 2-(4-methoxyphenyl)-1,2,3,4-tetrahydroisoquinoline 3d (23.9 mg, 0.1 mmol,
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1.0 equiv) and diphenyl phosphite easter 4a (80%, 26 puL, 0.11 mmol, 1.1 equiv) in toluene (1.5 mL)
were employed to give the product 5g (38.7 mg) in 82% yield as a white solid. *H NMR (500 MHz, CDCls)
67.54(d,J=7.1Hz, 1H), 7.28-7.04 (m, 11H), 6.95-6.92 (m, 4H), 6.83-6.81 (m, 2H), 5.40 (d, /= 21.7 Hz,
1H), 4.08 (ddd, J = 13.5, 9.5, 4.8 Hz, 1H), 3.76 (s, 2H), 3.58-3.53 (m, 1H), 2.99-2.87 (m, 2H); 3C NMR
(125 MHz, CDCl5) & 153.87, 151.18 (d, J = 10.5 Hz), 150.57 (d, J = 11.0 Hz), 144.14 (d, J = 9.9 Hz), 136.97
(d, J=6.1Hz), 129.82, 129.62, 129.58 (d, J = 1.7 Hz), 129.43 (d, J = 2.8 Hz), 128.65 (d, J = 4.6 Hz),
127.98 (d, J = 3.8 Hz), 126.37 (d, J = 3.2 Hz), 125.23, 125.00, 120.90 (d, J = 4.2 Hz), 120.65 (d, J = 4.2
Hz), 118.79, 114.78, 59.99 (d, J = 160.4 Hz), 55.84, 45.58, 26.09; 3P NMR (202 MHz, CDCl) § 15.22.

5h

Diphenyl (2-(naphthalen-1-yl)-1,2,3,4-tetrahydroisoquinolin-1-yl)phosphonate (5h): Following the
general procedure, 2-(naphthalen-1-yl)-1,2,3,4-tetrahydroisoquinoline 3e (25.9 mg, 0.1 mmol, 1.0
equiv) and diphenyl phosphite easter 4a (80%, 26 pL, 0.11 mmol, 1.1 equiv) in toluene (1.5 mL) were
employed to give the product 5h (29.0 mg) in 59% vyield as a white solid. *H NMR (500 MHz, CDCl3) &
7.76-7.58 (m, 4H), 7.40-7.02 (m, 15H), 6.87-6.86 (m, 2H), 5.73 (d, J = 20.6 Hz, 1H), 4.21-4.15 (m, 1H),
3.85-3.80 (m, 1H), 3.07-3.04 (m, 2H); 23C NMR (125 MHz, CDCl5) & 151.00 (d, J = 10.4 Hz), 150.50 (d, J
=11.2 Hz), 147.16 (d, /= 7.4 Hz), 136.81 (d, J = 6.2 Hz), 134.77, 129.84, 129.64, 129.55, 129.36 (d, J =
2.7 Hz), 129.26, 128.66 (d, / = 4.9 Hz), 128.31, 128.19 (d, J = 3.7 Hz), 127.59, 126.80, 126.56, 126.48 (d,
J=3.1Hz), 125.29, 125.06, 123.41, 120.85 (d, J = 4.3 Hz), 120.55 (d, / = 4.1 Hz), 118.38, 110.51, 59.33
(d, J = 159.7 Hz), 44.47, 26.72; 3P NMR (202 MHz, CDCl;) 6 15.20; HRMS (ESI) Calculated for
C31H26NOsPNa [M+Na]* : 514.1548. Found: m/z 514.1548.

Cl

5i

Diphenyl (6-chloro-2-phenyl-1,2,3,4-tetrahydroisoquinolin-1-yl)phosphonate (5i): Following the
general procedure, 6-chloro-2-phenyl-1,2,3,4-tetrahydroisoquinoline 3f (24.3 mg, 0.1 mmol, 1.0 equiv)
and diphenyl phosphite easter 4a (80%, 26 uL, 0.11 mmol, 1.1 equiv) in toluene (1.5 mL) were
employed to give the product 5i (30.0 mg) in 63% yield as a white solid. 'H NMR (500 MHz, CDCl3) &
7.47 (dd, J=8.9, 2.4 Hz, 1H), 7.29-7.00 (m, 14H), 6.90-6.85 (m, 3H), 5.54 (d, J = 20.8 Hz, 1H), 4.09-4.03
(m, 1H), 3.70-3.65 (m, 1H), 3.01-2.94 (m, 2H); *C NMR (125 MHz, CDCls) & 150.99 (d, J = 10.5 Hz),
150.45 (d,J=11.2 Hz), 149.35 (d, J=7.5 Hz), 138.80 (d, / = 6.0 Hz), 133.92 (d, / = 4.7 Hz), 129.92, 129.88
(d,/=4.9 Hz), 129.69, 129.56, 129.28 (d, /= 2.7 Hz), 128.33 (d, /= 1.6 Hz), 126.68 (d, /= 3.1 Hz), 125.42,
125.17, 120.83 (d, J = 4.2 Hz), 120.55 (d, J = 4.1 Hz), 119.85, 116.06, 58.90 (d, J = 161.3 Hz), 43.95,
26.56; 3P NMR (202 MHz, CDCl3) & 14.63; HRMS (ESI) Calculated for Cy;H,3CINOsPNa [M+Na]* :
498.1002. Found: m/z 498.0999.
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5j
Diphenyl (7-bromo-2-phenyl-1,2,3,4-tetrahydroisoquinolin-1-yl)phosphonate (5j): Following the
general procedure, 7-bromo-2-phenyl-1,2,3,4-tetrahydroisoquinoline 3g (28.7 mg, 0.1 mmol, 1.0
equiv) and diphenyl phosphite easter 4a (80%, 26 uL, 0.11 mmol, 1.1 equiv) in toluene (1.5 mL) were
employed to give the product 5j (36.4 mg) in 70% vield as a white solid. *H NMR (500 MHz, CDCls) &
7.70-7.69 (m, 1H), 7.37-6.84 (m, 17H), 5.50 (d, J = 21.6 Hz, 1H), 4.09-4.04 (m, 1H), 3.70-3.65 (m, 1H),
2.93-2.90 (m, 2H); 3C NMR (125 MHz, CDCls) 6 150.98 (d, J = 10.4 Hz), 150.42 (d, J = 11.2 Hz), 149.27
(d,J=7.9 Hz), 135.85 (d, /= 5.9 Hz), 131.88 (d, J = 2.2 Hz), 131.32 (d, / = 4.9 Hz), 131.14 (d, /= 3.8 Hz),
130.96 (d, J = 2.7 Hz), 129.94, 129.70, 129.54, 125.41, 125.19, 120.71 (d, /= 4.3 Hz), 120.55 (d, /= 4.3
Hz), 119.95, 119.74 (d, J = 3.5 Hz), 116.18, 58.80 (d, J = 162.0 Hz), 44.18, 25.97; 3'P NMR (202 MHz,
CDCl3) 6 14.25; HRMS (ESI) Calculated for C,7H23BrNOsPNa [M+Na]* : 542.0497. Found: m/z 542.0497.

Diphenyl (6,7-dimethoxy-2-phenyl-1,2,3,4-tetrahydroisoquinolin-1-yl)phosphonate (5k):*?
Following the general procedure, 6,7-dimethoxy-2-phenyl-1,2,3,4-tetrahydroisoquinoline 3h (26.9 mg,
0.1 mmol, 1.0 equiv) and diphenyl phosphite easter 4a (80%, 26 uL, 0.11 mmol, 1.1 equiv) in toluene
(1.5 mL) were employed to give the product 5j (43.1 mg) in 86% vyield as a white solid. *H NMR (500
MHz, CDCls) 6 7.28-7.02 (m, 13H), 6.91-6.83 (m, 3H), 6.66 (s, 1H), 5.50 (d, J = 20.1 Hz, 1H), 4.07 (ddd,
J=13.9,9.8, 4.5 Hz, 1H), 3.87 (s, 3H), 3.77 (s, 3H), 3.74-3.70 (m, 1H), 2.98-2.82 (m, 2H); **C NMR (125
MHz, CDCl5) 6 151.00 (d, J = 10.6 Hz), 150.55 (d, / = 11.1 Hz), 149.65 (d, J = 8.2 Hz), 148.92 (d, /= 3.3
Hz), 147.53 (d, /=3.2 Hz), 129.88, 129.63, 129.45,129.17 (d, J= 6.9 Hz), 125.29, 125.06, 120.90, 120.76
(d,/=4.1Hz),120.59 (d, J=4.1 Hz), 119.59, 116.20, 111.99 (d, J = 2.4 Hz), 111.37 (d, J = 3.5 Hz), 58.96
(d, J=160.8 Hz), 56.17, 56.10, 44.22, 25.98; 3P NMR (202 MHz, CDCl5) § 15.61.

51

Diphenyl ((methyl(phenyl)Jamino)methyl)phosphonate (5I): Following the general procedure,
CsPbBr; (0.006 M, 825 uL, 0.05 mmol, 5 mol%), dimethyl aniline 3h (13 uL, 0.1 mmol, 1.0 equiv) and
diphenyl phosphite easter 4a (80%, 26 uL, 0.11 mmol, 1.1 equiv) in THF (1.5 mL) were employed to
give the product 51 (17.7 mg) in 50% vyield as a white solid. *H NMR (500 MHz, CDCl;) 6 7.28-7.23 (m,
6H), 7.14-7.06 (m, 6H), 6.89 (d, J = 8.2 Hz, 2H), 6.79 (t, J = 7.3 Hz, 1H), 4.08 (d, J = 6.5 Hz, 2H), 3.10 (s,
3H); 3C NMR (125 MHz, CDCl3) 6 150.34 (d, J=10.0 Hz), 149.31 (d, J = 2.3 Hz), 129.91, 129.35, 125.35,
120.65 (d, J = 4.2 Hz), 118.28, 113.54, 50.56 (d, J = 161.9 Hz), 39.62; 3P NMR (202 MHz, CDCl5) § 17.14;
HRMS (ESI) Calculated for C;0H20NOsPNa [M+Na]* : 376.1078. Found: m/z 376.1072.
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5m

Diphenyl (1-phenylpyrrolidin-2-yl)phosphonate (5m): Following the general procedure, CsPbBrs
(0.006 M, 825 pL, 0.05 mmol, 5 mol%), 1-phenylpyrrolidine 3i (15 uL, 0.1 mmol, 1.0 equiv) and
diphenyl phosphite easter 4a (80%, 26 uL, 0.11 mmol, 1.1 equiv) in THF (1.5 mL) were employed to
give the product 5m (23.1 mg) in 61% yield as a white solid. *H NMR (500 MHz, CDCls) § 7.29-7.04 (m,
10H); 6.95-6.88 (m, 4H); 6.77 (t, J = 7.3 Hz, 1H), 4.48 (dd, J = 9.2, 4.0 Hz, 1H), 3.58 (t, J = 8.5 Hz, 1H);
3.27-3.22 (m, 1H); 2.65-2.59 (m, 1H); 2.48-2.38 (m, 1H); 2.30-2.15 (m, 1H); 2.11-2.06 (m, 1H); 3C NMR
(125 MHz, CDCls) & 150.59 (dd, J = 10.6, 5.6 Hz), 147.66, 129.78 (d, J = 26.5 Hz), 129.15, 125.10 (d, J =
21.5 Hz), 120.53 (dd, J = 17.3, 4.2 Hz), 117.69, 113.62, 57.14 (d, J = 168.7 Hz), 49.92 (d, J = 2.2 Hz),
28.18, 24.42; 3P NMR (202 MHz, CDCl3) & 19.08; HRMS (ESI) Calculated for C;;H,2NOsPNa [M+Na]* :
402.1235. Found: m/z 402.1236.

IV. Examples of Time Tracking Studies for S—S Bond Formation of

Disulfides

a) Time tracking studies for formation of diphenyl disulfide 2a.

SH CsPbBr (1 mol%) /@
2 > S\S
CH,Cl,, white LEDs, rt, air, 6 h ©/

1a 2a

Yield (%)

0 30 60 120 180 240 300 360 420 480

Time (min)

1 mol% CsPbBr3

Fig. S4 Time tracking studies of diphenyl disulfide 2a.
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b) Time tracking study of bis(4-fluorophenyl) disulfide 2c.

F
SH CsPbBr3 (1 mol%) /©/
2 > S\S
F CH,Cl,, white LEDs, rt, air, 12 h /©/
F

1c 2c
(a)
92
86

g 62
=
7]
2 43

0 3 6 9 12

Time (h)

s=gum B 5(4-fluorophenyl) disulfide
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Fig. S5 (a) Time tracking study of bis(4-chlorophenyl) disulfide 2c. (b) Time tracking study of bis(4-

fluorophenyl) disulfide 2¢ by GC-MS.
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c) Time tracking study of dicyclohexyl disulfide 2g

SH CsPbBr3 (1 mol%) /O
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==g== Dicyclohexyl disulfide
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Fig. S6 (a) Time tracking study of dicyclohexyl disulfide 2g. (b) Time tracking study of dicyclohexyl
disulfide 2g by GC-MS.
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V. Control Experiments for Converting Disulfide back to
Thiol under Reaction Condition
CsPbBr; (1 mol%) SH
©/S\S/© CH,Cly, White LEDs, rt, air, 6 h 2 ©/

(21.8 mg, 0.1 mmol) <1%

& o
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Fig. S7 Control experiments for converting disulfide 2a back to thiophenol under our reaction
condition. However, less than 1% thiophenol formation can be detected after 6 h reaction time, which

indicates the perovskite NCs did not reduce the disulfide back to the thiol under our reaction

conditions.
VI. Light “On-Off” Study

SH CsPbBrj perovskite (1 mol%) S. /©
2X CH,Cl,, white LEDs, rt, air, 6 h ©/ S
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Fig. S8 The formation of diphenyl disulfide 2a under “on” and “off” period of excitation light.

519

20



VII. Testing the Reusability of the Catalyst

For disulfide formation: A solution of CsPbBr; (330 puL, 0.002 mmol; 0.006 M in cyclohexane) was
added into a 10 mL sample vial with a magnetic stir bar, and then the cyclohexane was removed by
vacuum for 5 min. 2 mL of dichloromethane, 2 mL of cyclohexane and 21 pl of thiophenol (0.2 mmol)
were sequentially added into the sample vial at room temperature under air. The mixture was
irradiated with white LED strip (1 m, 9 W) while stirring for 8 h. When the reaction completed, the
product yield could be measured by *H NMR using 1,3,5-trimethoxybenzene as an internal standard.
For the first round, the yield of diphenyl disulfide 2a was 98%. Continuously, the second part of
thiophenol (21 ul) was added into the same vial and then irradiated with white LEDs for another 8 h.
The reaction of the second round experiment can be tracked by *H NMR or GC-MS. Once the reaction
completed, we then repeated the above step again as the third round. The overall yield of diphenyl
disulfide 2a for the second round and third round were 95% and 90% respectively, as illustrated in Fig.
S9a.

(@)

0.2 mmol PhSH

—_—
white LEDs, 8 h
round 2

0.2 mmol PhSH

0.002 mmol CsPbBrj
2 mL dichloromethane
2 mL cyclohexane

0.2 mmol PhSH

white LEDs, 8 h
round 3

white LEDs, 8 h
round 1

overall yield 98% overall yield 95% overall yield 90%

() CsPbBr,
“\ L2 A "

S20



(e)
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CsPbBr; NCs

i | PDF 54-0752
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20 /degree

Fig. S9. (a) the illustration of reusability test for CsPbBrs; NCs catalyzed S-S bond formation, (b) TEM
image of CsPbBr3; NCs, (c) TEM image of CsPbBr3 NCs after round 1 reaction, (d) TEM image of CsPbBr;
NCs after round 2 reaction, (e) Powder X-ray diffraction (XRD) patterns of CsPbBr3 NCs after round 1
and round 2 reaction; bars on bottom are simulated data of perovskite CsPbBr; (PDF-54-0752).

XRD analysis of CsPbBr; perovskite after the first round of reaction showed that the lattice spacing
reduces from 5.85 A to 5.70 A, as would be expected for a halide change from larger bromide to
smaller chloride ions. TEM images of the perovskite crystals showed negligible changes, confirming
that the changes in optical properties were not due to any changes to the nanocrystalline structure of
the catalyst. Scherrer broadening analysis showed a very slight increase in the average nanocrystalline
size from 92.4 A to 136.3 A after reaction, possibly due to minor Ostwald ripening process in solution.
The nanocrystal sizes obtained were generally consistent with TEM data.

The standard procedure for cross-dehydrogenative coupling of tertiary amines and phosphite esters:
A solution of CsPbBr; NCs (165 uL, 0.001 mmol; 0.006 M in cyclohexane) was added into a 10 mL
sample vial with a magnetic stir bar, and then the cyclohexane was removed by vacuum for 5 min. 1.5
mL of THF, 2-phenyl-1,2,3,4-tetrahydroisoquinoline (20.9 mg, 0.1 mmol, 1.0 equiv) and diphenyl
phosphite easter (80%, 26 uL, 0.11 mmol, 1.1 equiv) were sequentially added into the sample vial at
room temperature under air. The mixture was irradiated with white LED strip (1 m, 9 W) while stirring
for 4 h. When the reaction was completed, the product yield could be measured by *H NMR using
1,3,5-trimethoxybenzene as an internal standard. Continuously, the CsPbBr; NCs was isolated by
centrifugation, and redispersed in the mixture of 2-phenyl-1,2,3,4-tetrahydroisoquinoline 3a (20.9 mg,
0.1 mmol, 1.0 equiv), diphenyl phosphite easter 4a (80%, 26 uL, 0.11 mmol, 1.1 equiv) and 1.5 mL THF
for the second-round reaction. Then the mixture was irradiated with white LEDs for another 4 h. The
reaction of the second-round experiment can be tracked by H NMR. When the reaction was
completed, we then repeated the above steps three times and the overall yield were illustrated in Fig.
S10.
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Fig. $10 Reusability test for the perovskite nanocrystalline catalyst for cross-coupling of 2-phenyl-
1,2,3,4-tetrahydroisoquinoline 3a and diphenyl phosphite easter 4a.
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VIIl. Procedure for the Determination of Photochemical
Quantum Yield

For the determination of the quantum yield, CsPbBr; perovskite (0.001 mmol, 1 mol%) and thiophenol
(10.5 uL, 0.1 mmol) were dissolved in 2 mL of CH,Cl; in a standard quartz fluorescence cuvette (45 x
12.5 x 12.5 mm?3; 10mm beam path). The cuvette was placed in the beam of a 405 nm laser (100 mW)
for 30 mins (1800 s) for photocatalytic reaction. The yield of the product was determined by *H NMR
using 1,3,5-trimethoxybenzene as an internal standard. The absorbance of the reaction mixture at 405
nm was used in calculating the amount of laser power absorbed during reaction. The quantum yield
is calculated using the following equation:

Nreacted NA X Nyeacted _ NA X Nreacted _ h x c X NA X Nreacted

¢: =

Nph Elight B Pabsorbed Xt A X Pabsorbed Xt
Epn h X c
A

_ 6626 x1073* J.s x 2,998 x 10® m-s™" X 6.022 X 10%* x 2 X 107° mol
B 4.05x10"7m x 0.09]-s"1 x 1800s

= 0.036

where, ¢ is the quantum yield, Nreacted is the number of thiohphenol molecules depleted, N is the
number of photons absorbed, Na is Avogadro’s constant in moles™, Nreacted is the molar amount of
molecules depleted in moles, Eiign: is the energy of light absorbed in Joules, Eqn is the energy of a single
photon in Joules, Pabsorbed is the radiant power absorbed in Watts (Pabsorbed = 0.9Piaser), t is the irradiation
time in sec, h is the Planck’s constant in J-s, ¢ is the speed of light in m-s™, A is the wavelength of
irradiation source (405 nm) in meters.

The calculated quantum yield (average of two independent measurements) was 3.6%.
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IX. Detection of H, Generation under Strictly O, Free
Condition

(a)
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250 —

—+0.698 - H2

-252 -

0.233
Carrier gas 0816

-254 - et e s o
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Fig. S11 GC characterization of hydrogen production under strict oxygen-free environment, the
reaction vial was purged with argon and sealed. (a) For S-S bond formation reaction, (b) C-P bond
formation reaction. However, we could not detect any H, formation when the reaction was conducted

in the presence of air.
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X. Absorbance study of CsPbBr; NCs during reaction

Reaction
Time (min)
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0.0

400 500 600 700
Wavelength(nm)

Fig. S12 Absorbance measurements showing the spectral shifts of perovskite nanocrystals in reaction
mixtures consisting of CsPbBr3 + PhSH + CH,Cl,.
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XI. FTIR Characterization Spectra

Preparation: A solution of CsPbBr; (1.5 mL, 0.009 mmol; 0.006 M in cyclohexane) was added into a 10
mL sample vial with a magnetic stir bar, and the cyclohexane was removed by vacuum for 5 min.
Excessive amount of thiophenol (5 mmol) or hexanethiol (5 mmol) was added to the CsPbBr; NCs, then
the mixture was stir for 1 h under argon in dark. After that, the free thiophenol/hexanethiol was
removed by vacuum for 12 h in dark. The resulting solid was immediately subjected to collect the IR
spectra.

(a) (b)
T T T T T T ' T T T T T T
g E—CSPbBrK-thophenol Pb-Si g ! —— CsPbBr, + hexanethiol
c c
2 S
@ ' @ —— CsPbBr.
é 3 ——CsPbBr, é N
%] 2]
c c
o o
= = V
-S-H
' —— hexanethiol
' ——thiophenol
T T T T T T T T T T T T
4000 3500 3000 2500 2000 1500 1000 500 4000 3500 3000 2500 2000 1500 1000 500
Wavelength (cm™) Wavelength (cm™)
(c) (d)
T T T T
N
— — —— CsPbBr, + hexanethiol | Pb-S
e\i —— CsPbBr; + thiophenol é’/ H
c c
2 S
[%2] 9]
2 —— CsPbBr, 2
g 3 IS —— CsPbBr,
%] 2]
c c
3 o
= =
—— hexanethiol
——thiophenol
T T T T
2000 1500 1000 500 2000 1500 1000 500
Wavelength (cm™) Wavelength (cm™)

Fig. S13 (a) Full FTIR spectra of initial CsPbBrs NCs, final CsPbBr; NCs and pure thiophenol. (b) Full FTIR
spectra of initial CsPbBrs NCs, final CsPbBr; NCs and pure hexanethiol. (c) Expanded views in the
spectra regions of 2000-500 cm™ in (a). (d) Expanded views in the spectra regions of 2000-500 cm™ in
(b). The peak around 800 cm™ can be assighed to Pb-S bonds, demonstrating that thiols serve as part
of the capping ligands for the CsPbBrs NCs.*
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Xll. Photoluminescence quenching study of 2-phenyl-1,2,3,4-
tetrahydroisoquinoline and diphenyl phosphite easter

(a)

(b)

PL Intensity

PL Intensity

0.005 ~

0.004

0.003

0.002

0.001

0.000 e

—— blank
—— 0.012 M 2-phenyl-1,2,3,4-tetrahydroisoquinoline
0.024 M 2-phenyl-1,2,3,4-tetrahydroisoquinoline
0.036 M 2-phenyl-1,2,3,4-tetrahydroisoquinoline
——— 0.048 M 2-phenyl-1,2,3,4-tetrahydroisoquinoline
0.048 M 2-phenyl-1,2,3,4-tetrahydroisoquinoline + 0.057 M diphenyl phosphite

T
460

T
480

T T T T T 1
500 520 540 560 580 600

Wavelength (nm)
—— blank
= 0.013 M diphenyl phosphite
0.026 M diphenyl phosphite
0.039 M diphenyl phosphite
= 0.052 M diphenyl phosphite
0.052 M diphenyl phosphite + 0.048 M 2-phenyl-1,2,3,4-tetrahydroisoquinoline
0.005
0.004 —
0.003
0.002
0.001
0.000
T T T T T T T T T T T T 1
460 480 500 520 540 560 580 600

Wavelength (nm)

S27



(c)
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Fig. S14 (a) PL quenching of 2-phenyl-1,2,3,4-tetrahydroisoquinoline. (b) PL quenching of 2-phenyl-
1,2,3,4-tetrahydroisoquinoline. (c) Combine quenching data.
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Xlil. Proposed Mechanism

H,

\,
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Fig. S15. Proposed mechanisms for dehydrogenative thiol couplings (a) in the absence of air and (b) in

the presence of air, (c) DMPO-trapped superoxide radical EPR spectra in CH,Cl, (g = 2.00619, Mn
calibrated).
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Fig. S16. Tentative proposed phosphonylation mechanism in the presence of air.
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XV. 1H, 13C, 3'P, 1°F NMR spectra
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