Supporting Information

CO oxidation over MO_x (M = Mn, Fe, Co, Ni, Cu)

supported on SmMn₂O₅ composite catalysts

Yun Lang,^a Jie Zhang,^a Zijian Feng,^a Xiao Liu,^b Yuning Zhu,^a Tao Zeng,^a Yunkun Zhao,^c Rong Chen^b and Bin Shan*^a

^a State Key Laboratory of Materials Processing and Die and Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, Hubei, People's Republic of China

*E-mail: bshan@mail.hust.edu.cn

^b State Key Laboratory of Digital Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, Hubei, People's Republic of China

^c State Key Laboratory of Advanced Technologies for Comprehensive Utilization of Platinum Metal, Kunming Institute of Precious Metals,

Kunming 650106, Yunnan, China.

Fig. S1 (a) XRD patterns of all MO_x/SMO samples; (b) corresponding enlarged figures.

Fig. S2 Dark field STEM and EDX-mapping images of CuO_x/SMO sample.

Fig. S3 Light off CO oxidation curves of (a) 1 wt.% CuO_x + SMO mechanical mixture and pure SMO; (b) pure MO_x , 1 wt% CuO_x/MnO_x and 1 wt% CuO_x/SMO ; (c)1 wt% MO_x/Al_2O_3 samples, below 200 °C, CO conversion of MO_x/Al_2O_3 samples is negligible (<2%), which suggests that MO_x surface is not the active center for CO oxidation over MO_x/SMO composites; (d) XRD pattern of 1 wt% CuO_x/MnO_x sample, the peaks of CuO or Cu_2O can't be detected in the pattern, as the same as the MO_x/SMO samples.

Fig. S4 (a) Reusability test for CO oxidation over CuO_x/SMO , the sample had been repeatedly tested for three times; (b) catalytic performance at 160 °C for CO oxidation versus time on line over the CuO_x/SMO and bare SMO, the feed gas was the same with that in the activity tests (1.3 %CO/10 %O₂/N₂ at 100 ml min⁻¹, with a space velocity of 120000 ml g⁻¹ h⁻¹).

Fig. S5 Light off CO oxidation curves of (a) FeO_x/SMO , $FeO_x/SMO-600$, $FeO_x/SMO-700$ and bare SMO, where $FeO_x/SMO-600$ and $FeO_x/SMO-700$ are ascribed to FeO_x/SMO samples annealed at 600 and 700 °C in static air for 2h; (b) CuO_x/SMO samples which were calcined at 400, 600 and 700 °C for 4h after the precipitation process (in the catalysts preparation).

Fig. S6 XPS patterns of (a) Co 2p (b) Ni 2p (c) Cu 2p (d) Fe 2p over MO_x/SMO samples. Sat stand for the satellite peak.

The XPS pattern of Co, Ni and Cu in MO_x/SMO is given in Fig. S4. For Co 2p core levels, peak at 780.1 and 795.1 eV is assigned to Co³, the 781.7 and 796.7 eV is assigned to Co^{2+.1} For Ni 2p core levels, peak at 855.0 and 872.5 eV is assigned to Ni²⁺, the 856.7 and 874.2 eV is assigned to Ni^{3+.2,3} For Cu 2p core levels, peak at 933.4 and 953.2 eV is assigned to Cu⁺, the 934.9 and 954.7 eV is assigned to Cu^{2+.4,5} For Fe 2p core levels, peak at 710.0 and 723.6 eV is assigned to Fe²⁺, the 711.2 and 724.6 eV and is assigned to Fe^{3+.6,7}

Fig. S7 XPS patterns of pure MnO_x.

The XPS pattern of Mn 2p and O 1s over pure MnO_x is shown in Fig. S5. Peak at 641.4 eV is identified as Mn³⁺ and the 643.0 eV is referred to Mn⁴⁺, The atomic ratio of Mn⁴⁺/Mn³⁺ in MnO_x is 0.43, the molar ratio of O_{ads}/O_{latt} is 0.59. For either MnO_x or bare SMO, their Mn⁴⁺/Mn³⁺ atomic ratio is much lower than that of MnO_x/SMO catalyst.

Fig. S8 H₂ consumptions in the reduction process of " Mn^{4+} to $Mn^{3+"}$ and the average valence states of Mn ion over the MO_x/SMO composites and pure SMO sample.

Fig. S9 linear CO adsorption spectra of MO_x/SMO and SMO.

Linear CO adsorption spectrum of MOx/SMO series catalysts is shown in Fig. S6. The CO adsorption band on Mn can be observed over all SMO samples, which is located around 2080 ¹ and 2060 cm^{-1 8,9}. Among loaded MO_x/SMO, additional lineal CO adsorption only appears over CuO_x-SMO catalyst at 2105 cm⁻¹, it's indicated by CO adsorption on Cu^{+ 10,11}.

- 10 W.W. Wang, W.Z. Yu, P.P. Du, H. Xu, Z. Jin, R. Si, C. Ma, S. Shi, C.J. Jia, C.H. Yan, ACS Catal., 2017, 7, 1313-1329.
- 11 Y. Tang, L. Dong, C. Deng, M. Huang, B. Li, H. Zhang, Catal. Commun., 2016, 78, 33-36.

¹ L. Fu, Z. Liu, Y. Liu, B. Han, P. Hu, L. Cao, D. Zhu, Adv. Mater., 2005, 17, 217-221.

² A. R. Gonziilez-Elipe, J. P. Holgado, R. Alvarez, C. Munuera, J. Phys. Chem., 1992, 96, 3080-3086.

³ A. F. Carley, S. D. Jackson, J. N. O'Shea, M. W. Roberts, Surf. Sci., 1999, 440, 868-874.

⁴ H. Einaga, A. Kiya, S. Yoshioka, Y. Teraoka., Catal. Sci. Technol., 2014, 4, 3713-3722.

⁵ S. Sun, D. Mao, J. Yu, Z. Yang, G. Lu, Z. Ma, Catal. Sci. Technol., 2015, 5, 3166-3181

⁶ H. Einaga, A. Kiya, S. Yoshioka, Y. Teraoka., Catal. Sci. Technol., 2014, 4, 3713-3722.

⁷ S. Sun, D. Mao, J. Yu, Z. Yang, G. Lu, Z. Ma, Catal. Sci. Technol., 2015, 5, 3166-3181

⁸ L. Cai, Z. H. Hu, P. Branton, W. Li, Chinese J. Catal., 2014, 35, 159-167.

⁹ B. D. Adams, R. M. Asmussen, A. Chen, R. C. Mawhinney, Can. J. Chem., 2011, 89, 1445-1456.