Supporting Information

Mesoporous Mn-Ti amorphous oxides: a robust low-temperature NH₃-SCR catalyst

Yanran Yang^{a,b}, Minghong Wang^{a,b}, Zuliang Tao^{a,b}, Qing Liu^b, Zhaoyang Fei^{a,b*}, Xian Chen^b, Zhuxiu Zhang^b, Jihai Tang^b, Mifen Cui^b, Xu Qiao^{a,b}

^a State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 210009, China

^b College of Chemical Engineering, Nanjing Tech University, Nanjing 210009, China

*Corresponding Author

Tel.: +86 25 83587168. Fax: +86 25 83587168. E-mail: zhaoyangfei@njtech.edu.cn

In order to comprehensively evaluate the activity of Mn-Ti amorphous oxide catalysts in this study, the $MnO_x/TiO_2(im)$ and $MnO_x-TiO_2(co)$ catalysts with the same ratio of $n_{Mn}/(n_{Ti}+n_{Mn})$ in $Mn_{0.5}Ti_{0.5}$ were prepared as comparisons by conventional impregnation and co-precipitation methods, respectively.

For impregnation method, manganese nitrate and P25 were used as the precursor and support, respectively. After impregnation, the excess water was removed in a rotary evaporator. The sample was dried at 60 °C for 2 days and then calcined at 500 °C for 4 h to obtain $MnO_x/TiO_2(im)$ catalyst.

For co-precipitation method, titanium sulphate and manganese nitrate were dissolved completely in 100 mL deionized water and stirred. Then ammonia water was gradually added until the pH value of mixed solution reached 10. The mixture was stirred at room temperature for 3 h and then aged for 1 h. The precipitation was filtered and washed with deionized water for five times. The sample was dried at 60 °C for 2 days and then calcined at 500 °C for 4 h to obtain MnO_x -TiO₂(co) catalyst.

Fig. S1 NH₃-SCR performance of $Mn_{0.5}Ti_{0.5}$, MnO_x -TiO₂(co) and MnO_x /TiO₂(im) catalysts: (a) NO conversion; (b) N₂ selectivity; (c) N₂ yield. Reaction conditions: $[NO] = [NH_3] = 1000 \text{ ppm}, [O_2] = 3 \text{ vol.}\%$ and N₂ as balance gas.

Fig. S2 H_2O + SO₂ durability tests of $Mn_{0.5}Ti_{0.5}$ catalyst at 200 °C. Reaction conditions: [NO] = [NH₃] = 1000 ppm, [SO₂] =200 ppm, [H₂O] = 20 vol.%, [O₂] = 3 vol.%, balance N₂.

Fig. S3 (a) H_2O and (b) $H_2O + SO_2$ durability tests of $Mn_{0.5}Ti_{0.5}$, MnO_x -TiO₂(co) and $MnO_x/TiO_2(im)$ catalysts at 200 °C. Reaction conditions: $[NO] = [NH_3] = 1000$ ppm, $[SO_2] = 100$ ppm, $[H_2O] = 10$ vol.%, $[O_2] = 3$ vol.%, balance N₂.

Fig. S4 HRTEM image and SAED pattern (inset) of the $Mn_{0.3}Ti_{0.7}$ catalyst.

Fig. S5 Mn K-edge radial structure functions of reference compounds and $Mn_{0.5}Ti_{0.5}$ catalyst.

Fig. S5 presents the radial structure functions of Mn K-edge of the reference oxides (MnO, Mn₂O₃, and MnO₂) and the Mn_{0.5}Ti_{0.5} catalyst. As shown in **Fig. S5**, All spectra of the samples showed the coordination peaks with different intensities at 1.47 Å, which could be ascribed to Mn-O band, while the peaks at 2-4 Å were attributed to Mn-Mn bonds.^{1,2} Furthermore, the EXAFS spectrum for Mn_{0.5}Ti_{0.5} catalyst was different from that of the reference oxide, indicating that the unique chemical states of manganese species in Mn_{0.5}Ti_{0.5} catalyst caused by the strong interaction between Mn and Ti.

[1] Q. Tang, X. Huang, C. Wu, P. Zhao, Y. Chen and Y. Yang, J. Mol. Catal. A:
Chem., 2009, 306,48-53.

[2] Q. Li, M. Meng, H. Xian, N. Tsubaki, X. Li, Y. Xie, T. Hu and J. Zhang, *Environ. Sci. Technol.*, 2010, 44, 4747-4752.

Fig. S6 Raman spectra of Mn_aTi_{1-a} catalysts.

Fig. S7 SEM images of (a) $Mn_{0.1}Ti_{0.9}$, (b) $Mn_{0.2}Ti_{0.8}$, (c) $Mn_{0.3}Ti_{0.7}$, (d) $Mn_{0.4}Ti_{0.6}$, (e) $Mn_{0.5}Ti_{0.5}$ and (f) $Mn_{0.6}Ti_{0.4}$.

Fig. S8 (a) N_2 adsorption-desorption isotherms and (b) pore size distribution curves of the Mn_aTi_{1-a} and TiO_2 catalysts.

Fig. S9 (a) Mn 2p and (b) O 1s XPS spectra of $Mn_{0.5}Ti_{0.5}$, MnO_x -TiO₂(co) and MnO_x /TiO₂(im) catalysts.

Fig. S10 H_2 -TPR profiles of $Mn_{0.5}Ti_{0.5}$, MnO_x -TiO₂(co) and MnO_x /TiO₂(im) catalysts.

Fig. S11 NH₃-TPD profiles of $Mn_{0.5}Ti_{0.5}$, MnO_x -TiO₂(co) and MnO_x /TiO₂(im) catalysts.

Fig. S12 NO oxidation activities to NO₂ over the Mn_aTi_{1-a} catalysts. Conditions: [NO]

= 1000 ppm, $[O_2]$ = 3 vol.% and N_2 as balance gas.

Fig. S13 *In-situ* FTIR spectra of (a) NH_3 and (b) $NO + O_2$ adsorption over the $Mn_{0.5}Ti_{0.5}$ catalyst at different temperatures. Conditions: $[NH_3] = 1000$ ppm (when used), [NO] = 1000 ppm (when used), $[O_2] = 3$ vol.% (when used), balance N_2 .

Fig. S14 *In-situ* FTIR spectra of (a) NO + O_2 reacted with pre-adsorbed NH₃ species and (b) NH₃ reacted with pre-adsorbed NO_x species over the Mn_{0.5}Ti_{0.5} catalyst at 100 °C.

Fig. S15 *In-situ* FTIR spectra of $NH_3 + NO + O_2$ absorption over the $Mn_{0.5}Ti_{0.5}$ catalyst with different times at 150 °C. Conditions: $[NH_3] = [NO] = 1000$ ppm, $[O_2] = 3$ vol.%, balance N_2 at 150 °C.

Catalysts	H_2 consumption (cm ³ ·g _{cat} ⁻¹)	Acid amount (mmol·g _{cat} -1)	Surface atomic concentration (%)			Atomic ratio (%)	
			Mn	Ο	Ti	$Mn^{4+}/(Mn^{4+}+Mn^{3+})$	$O_{\alpha}/(O_{\alpha}+O_{\beta})$
Mn _{0.5} Ti _{0.5}	69.46	0.37	13.34	71.48	15.18	46.30	23.87
MnO_x -Ti $O_2(co)$	68.03	0.32	10.05	75.35	14.60	33.71	32.06
MnO _x /TiO ₂ (im)	59.03	0.01	11.53	71.91	16.56	30.48	26.92

Table S1 H₂ consumption and atomic ratio of Mn_aTi_{I-a} catalysts