Supporting Information

Porous graphene doped with Fe/N/S incorporated Fe₃O₄ nanoparticles for efficient oxygen reduction reaction

Yi Li, ^a Yazhou Zhou, ^{*, a, b} Chengzhou Zhu, ^c Yun Hang Hu, ^d Shuai Gao, ^a

Qinqin Liu, ^{a, b} Xiaonong Cheng, ^a Lili Zhang, ^b Juan Yang, ^{*, a, b} and Yuehe Lin^c

^aSchool of Materials Science and Engineering, Jiangsu University, Zhenjiang, Xuefu Road 301,

China. *Email address: yangjuan6347@ujs.edu.cn; zhouyazhou60@gmail.com

^bJiangsu Key Laboratory for Chemistry of Low-Dimensional Materials, School of Chemistry and Chemical Engineering, Huaiyin Normal University, Huaian 223300, China.

^cSchool of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99164, USA.

^dDepartment of Materials Science and Engineering, Michigan Technological University, Houghton, Michigan 49931, USA.

Electrochemical evaluations

Electrode potentials conversion. Potentials measured versus Ag/AgCl electrode were converted to a reversible hydrogen electrode (RHE) scale based on the following formula [S1-S4]:

 $E_{vsRHE} = E_{vsAg/AgCl} + E^{0}_{Ag/AgCl} + 0.059 pH \text{ (in volts)}$ (1)

Kouteky-Levich (K-L) plots. The working electrode was scanned cathodically at the rate of 10 mV s⁻¹ with the rotation speed from 225 to 2500 rpm. The relevant K-L plots ($-J^{-1} vs. \omega^{-1/2}$) are calculated by the following formula [S2]:

$$\frac{1}{J} = \frac{1}{J_k} + \frac{1}{J_d} = \frac{1}{J_k} + \frac{1}{B\omega^{1/2}}$$

$$B = 0.62nFC_0 D_0^{2/3} \mu^{-1/6}$$
(2)
(3)

where *B* and ω are the reciprocal of the slope and the angular velocity of the electrode, respectively, *n* is the transferred electrons for ORR, *F* is the Faraday constant (*F*=96485 C mol⁻¹), μ is the kinematic viscosity of the electrolyte (0.01 cm² s⁻¹), D_0 is the diffusion coefficient of O₂ in 0.1 M KOH (D_0 =1.9×10⁻⁵ cm² s⁻¹), and C_0 is the concentration of O₂ (C_0 =1.2×10⁻⁶ mol cm⁻³). Furthermore, J_k is the kinetic-limiting current density, and J_d is the diffusing-limiting current density. The constant 0.62 is adopted when the rotation rate is expressed in rad s⁻¹. J_k can be calculated from J_d according to eq2 [S2]:

$$J_k = \frac{J \times J_d}{J_d - J} \tag{4}$$

The hydrogen peroxide yield ($^{6}H_{2}O_{2}$) was calculated by the following equation [S4]:

$$\%H_2O_2 = 200 \frac{\frac{i_r}{N}}{\frac{i_d + \frac{i_r}{N}}{N}} = 200 \frac{\frac{i_r}{Ni_d + i_r}}{\frac{i_d + i_r}{N}}$$

Where i_d is the disk current, i_r is ring current, and N is the Pt ring current collection efficiency (0.37). The current-time (*i-t*) chronoamperometric response curves were recorded at -0.35 V vs. Ag/AgCl in O₂-saturated 0.1 M KOH solution at a rotating rate of 1600 rpm.

Figure S1 The N₂ adsorption/deposition isotherms of HSG.

Figure S2 The EDS spectrum of the Fe₃O₄/FeNSG-3.

Figure S3 (a) RDE polarization curves on NS-HSG catalyst at different rotation rates, (a*) is the corresponding picture of K-L plots of $-J^{-1}$ versus $\omega^{-1/2}$.

Figure S4 (a) RDE polarization curves on Fe₃O₄/FeSG catalyst at different rotation rates, (a*) is the corresponding picture of K-L plots of $-J^{-1}$ versus $\omega^{-1/2}$.

Figure S5 (a) RDE polarization curves on Fe₃O₄/FeNG catalyst at different rotation rates, (a*) is the corresponding picture of K-L plots of $-J^{-1}$ versus $\omega^{-1/2}$.

Figure S6 (a) RDE polarization curves on Fe₃O₄/FeNSG-1 catalyst at different rotation rates, (a*) is the corresponding picture of K-L plots of $-J^{-1}$ versus $\omega^{-1/2}$.

Figure S7 (a) RDE polarization curves on Fe₃O₄/FeNSG-2 catalyst at different rotation rates, (a*) is the corresponding picture of K-L plots of $-J^{-1}$ versus $\omega^{-1/2}$.

Figure S8 (a) RDE polarization curves on Fe₃O₄/FeNSG-2 catalyst at different rotation rates, (a*) is the corresponding picture of K-L plots of $-J^{-1}$ versus $\omega^{-1/2}$.

Table S1 The I_D/I_G values of different Fe₃O₄/FeNSG hybrids, for comparison, the I_D/I_G values of pure HSG and NS-HSG are also presented.

Samples	I_D/I_G
HSG	0.956
NS-HSG	1.046
Fe ₃ O ₄ /FeNSG-1	0.961
Fe ₃ O ₄ /FeNSG-2	0.992
Fe ₃ O ₄ /FeNSG-3	0.963

Table S2 Textual parameters of N2 adsorption/deposition analysis for different samples

Sample	$S_{BET} ({ m m}^2~{ m g}^{-1})$	Pore vol. (cm ³ g ⁻¹)
NS-HSG	406.4	0.236
Fe ₃ O ₄ /FeNSG-1	429.9	0.282
Fe ₃ O ₄ /FeNSG-2	608.6	0.415
Fe ₃ O ₄ /FeNSG-3	530.5	0.311

References

- [S1] Y. Li, J. Yang, N. Zhao, J. Huang, Y. Zhou, K. Xu, N. Zhao, Appl. Catal., A, 2017, 534, 30-39.
- [S2] Y. Zhou, C. Yen Hsu, S. Fu, G. Yang, C. Zhu, D. Du, P. Wo Ching, X. Cheng, J.Yang, C.M. Wai, Y. Lin, *Green Chem.*, 2015, 17, 3552-3560.
- [S3] Y. Li, J. Yang, J. Huang, Y. Zhou, K. Xu, N. Zhao, X. Cheng, *Carbon*, 2017, 122, 237-246.
- [S4] P. Chen, T. Zhou, L. Xing, K. Xu, Y. Tong, H. Xie, L. Zhang, W. Yan, W. Chu,
- C. Wu, Y. Xie, Angew. Chem. Int. Ed., 2017, 56, 610-614.