Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2018

Supplementary information

The influence of alkali- treated zeolite on the oxide-zeolite

syngas conversion process

Xiaoli Yang,^{ab} Xiong Su,^a Binglian Liang,^{ab} Yaru Zhang,^{ab} Hongmin Duan,^a Junguo Ma,^a Yanqiang Huang^{*a} and Tao Zhang^{ab}

^a State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, No. 457 Zhongshan Road, Dalian 116023, P. R. China.

^b University of Chinese Academy of Sciences, Beijing 100049, P. R. China.

* Corresponding authors, E-mail: <u>yqhuang@dicp.ac.cn</u>.

Fig. S1. XRD patterns of ZSM-5 treated at different conditions: (a) parent ZSM-5, (b) ZSM-5 treated with NaOH (0.5 mol L⁻¹) at different temperature for 30 min, (c) ZSM-5 treated with NaOH (0.5 mol L⁻¹) at 80 °C for different time.

Fig. S2. SEM image of parent ZSM-5.

Fig. S3. SEM images of ZSM-5 treated with NaOH (0.5 mol L^{-1}) at (a) 70 °C and (b) 90 °C for 30

min.

Fig. S4. SEM images of ZSM-5 treated with NaOH (0.5 mol L⁻¹) at 80 °C for different time (a) 15

min, (b) 50 min and (c) 90 min.

Fig. S5. Nitrogen adsorption-desorption isotherms of ZSM-5 treated at different conditions: (a) parent ZSM-5, (b) ZSM-5 treated with NaOH (0.5 mol L⁻¹) at different temperature for 30 min and (c) ZSM-5 treated with NaOH (0.5 mol L⁻¹) at 80 °C for different time.

Fig. S6. The pore size distribution of ZSM-5 treated at different conditions: (a) parent ZSM-5, (b) ZSM-5 treated with NaOH (0.5 mol L^{-1}) at different temperature for 30 min, (c) ZSM-5 treated with NaOH (0.5 mol L^{-1}) at 80 °C for different time.

Fig. S7. ²⁹Si MAS NMR spectra of ZSM-5 treated at different conditions: (a) ZSM-5 treated with NaOH (0.5 mol L⁻¹) at different temperature for 30 min, (b) ZSM-5 treated with NaOH (0.5 mol L⁻¹) at 80 °C for different time.

Fig. S8. ²⁷Al MAS NMR spectra of parent ZSM-5.

Fig. S9. ²⁷Al MAS NMR spectra of ZSM-5 treated at different conditions: (a) ZSM-5 treated with NaOH (0.5 mol L⁻¹) at different temperature for 30 min, (b) ZSM-5 treated with NaOH (0.5 mol L⁻¹) at 80 °C for different time.

Fig. S10. NH₃-TPD spectra of ZSM-5 treated at different conditions: (a) ZSM-5 treated with NaOH (0.5 mol L^{-1}) at different temperature for 30 min and (b) ZSM-5 treated with NaOH (0.5 mol L^{-1}) at 80 °C for different time.

Fig. S11. The CO conversion and product selectivity of syngas conversion at different reaction temperature for composite catalyst containing Zn-Cr oxide and parent ZSM-5.

Fig. S12. The CO conversion and product selectivity of syngas conversion at different reaction temperature for composite catalyst containing Zn-Cr oxide and ZSM-5 treated by NaOH with different concentrations at 80 °C for 30 min: (a) 0.1 mol L^{-1} , (b) 0.2 mol L^{-1} and (c) 1.0 mol L^{-1} .

Fig. S13. The CO conversion and product selectivity of syngas conversion at different reaction temperature for composite catalyst containing Zn-Cr oxide and ZSM-5treated with NaOH (0.5 mol L⁻¹) at different temperature for 30 min: (a) 70 °C and (b) 90 °C.

Fig. S14. The CO conversion and product selectivity of syngas conversion at different reaction temperature for composite catalyst containing Zn-Cr oxide and ZSM-5 treated with NaOH (0.5 mol L^{-1}) at 80 °C for different time: (a) 15 min, (b) 50 min and (c) 90 min.

Fig. S15. Hydrocarbon selectivity and CO conversion of syngas conversion at 360 °C for composite catalyst containing Zn-Cr oxide and ZSM-5: (a) treated with NaOH (0.5 mol L^{-1}) at different tempreture for 30 min and (b) treated with NaOH (0.5 mol L^{-1}) at 80 °C for different time.

Main product	Content
Toluene	1.18%
p-xylene	11.52%
o-xylene	3.61%
m-trimethylbenzene	34.94%
0-trimethylbenzene	3.22%
tetramethylbenzene	20.14%
O-methyl ethyl benzene	2.26%
O-dimethyl ethyl benzene	1.23%
pentamethylbenzene	3.12%
Others	18.78%

Table S1. The product distribution of liquid phase for composite catalyst containing Zn-Cr oxide and ZSM-5 treated with NaOH (0.5 mol L^{-1}) at 80 °C for 30 min.

Table S2 The acid strength distribution of NaZSM-5 and HZSM-5 zeolite.

sample	Medium acid Strong acid / mmol g ⁻¹ / mmol g ⁻¹	Total and		150 °C			
		/ mmol g ⁻¹	g^{-1} /mmol g ⁻¹	M/S acid	B acid /mmol g ⁻¹	L acid /mmol g ⁻¹	B/L
HZSM-5	0.12	0.25	0.37	0.48	0.39	0.34	1.16
NaZSM-5	0.26	0.11	0.37	2.34	0.06	0.37	0.16