Ru and Ag promoted Co/Al₂O₃ catalysts for the gas-phase amination of aliphatic alcohols with ammonia

J. Ibáñez,^{1,2} B. T. Kusema,¹ S. Paul,² and M. Pera-Titus^{1,*}

¹ Eco-Efficient Products and Processes Laboratory (E2P2L), UMI 3464 CNRS – Solvay, 3966 Jin Du Road, Xin Zhuang Ind. Zone, 201108 Shanghai, China

² Univ. Lille, CNRS, Centrale Lille, ENSCL, Univ. Artois, UMR 8181 - UCCS - Unité de Catalyse et Chimie du Solide, F-59000 Lille, France

**Corresponding authors:* marc.pera-titus-ext@solvay.com

Supporting Information

FIGURE CAPTIONS

Figure S1. Results of the band deconvolution for H_2 -TPR profiles of 5Co and $5Co_{98.5}$ -NM_{1.5} catalysts.

Figure S2. Results of the band deconvolution for H₂-TPR profiles of 1.5% a/a Ag promoted Co catalysts as a function of the impregnation sequence (i.e. $Ag_{1.5}$ - $5Co_{98.5}$, $5Co_{98.5}(Ag_{1.5})$ and $5Co_{98.5}$ - $Ag_{1.5}$).

Figure S3. Results of the band deconvolution for H₂-TPR profiles of 1.5% a/a Ru promoted Co catalysts as a function of the impregnation sequence (i.e. $Ru_{1.5}$ - $5Co_{98.5}$, $5Co_{98.5}(Ru_{1.5})$ and $5Co_{98.5}$ - $Ru_{1.5}$).

Figure S4. Results of the band deconvolution for H_2 -TPR profiles of Ag-5Co catalysts at variable Ag loading (i.e. $Ag_{0.75}$ - $5Co_{99.25}$, $Ag_{1.5}$ - $5Co_{98.5}$, Ag_3 - $5Co_{97}$, Ag_5 - $5Co_{95}$).

Figure S5. Results of the band deconvolution for H₂-TPR profiles of 5Co(Ru) catalysts at variable Ru loading [i.e. $5Co_{99.97}(Ru_{0.03})$, $5Co_{99.9}(Ru_{0.1})$, $5Co_{99.7}(Ru_{0.3})$, $5Co_{99.25}(Ru_{0.75})$, $5Co_{98.5}(Ru_{1.5})$ and $5Co_{97}(Ru_{3})$].

Figure S6. Co 2p XPS spectra of calcined (a) 5Co, (b) 5Co_{99.7}(Ru_{0.3}) and (c) Ag₃-5Co₉₇.

TABLE CAPTIONS

Table S1. List of the catalysts prepared in this study.

Table S2. List of catalytic results of Co and Co-NM bimetallic catalysts prepared in this study.

Table S3. Main bands observed in the H₂-TPR profiles of 5Co-NM bimetallic catalysts promoted by Pt, Pd, Ag, Au and Ru (1.5% a/a) using the sequential impregnation protocol.

Table S4. Main bands observed in the H_2 -TPR profiles of 5Co catalysts promoted by Ag and Ru (1.5% a/a) as a function of the impregnation sequence.

Table S5. Main bands observed in the H_2 -TPR profiles of $5Co_X(Ru_Y)$ catalysts as a function of the Ru loading.

Table S6. Main bands observed in the H_2 -TPR profiles of Ag_Y -5Co_X catalysts as a function of the Ag loading.

Table S7. Results for band deconvolution for the Co 2p XPS spectra measured on the 5Co, $5Co_{99.7}(Ru_{0.3})$ and Ag₃-5Co₉₇ catalysts.

Table S8. Results for band deconvolution for the Ru 3d XPS spectra measured on the $5C_{099,7}(Ru_{0.3})$ and 0.026Ru catalysts.

Table S9. Results for band deconvolution for the Ag 3d XPS spectra measured on the Ag_3-5Co_{97} and 0.27Ag catalysts.

Figure S1. Results of the band deconvolution for H_2 -TPR profiles of 5Co and 5Co_{98.5}-NM_{1.5} catalysts.

Figure S2. Results of the band deconvolution for H₂-TPR profiles of 1.5% a/a Ag promoted Co catalysts as a function of the impregnation sequence (i.e. $Ag_{1.5}$ - $5Co_{98.5}$, $5Co_{98.5}(Ag_{1.5})$ and $5Co_{98.5}$ - $Ag_{1.5}$).

Figure S3. Results of the band deconvolution for H₂-TPR profiles of 1.5% a/a Ru promoted Co catalysts as a function of the impregnation sequence (i.e. $Ru_{1.5}$ - $5Co_{98.5}$, $5Co_{98.5}(Ru_{1.5})$ and $5Co_{98.5}$ - $Ru_{1.5}$).

Figure S4. Results of the band deconvolution for H₂-TPR profiles of Ag-5Co catalysts at variable Ag loading (i.e. $Ag_{0.75}$ - $5Co_{99.25}$, $Ag_{1.5}$ - $5Co_{98.5}$, Ag_3 - $5Co_{97}$, Ag_5 - $5Co_{95}$).

Figure S5. Results of the band deconvolution for H_2 -TPR profiles of 5Co(Ru) catalysts at variable Ru loading [i.e. 5Co_{99.97}(Ru_{0.03}), 5Co_{99.9}(Ru_{0.1}), 5Co_{99.7}(Ru_{0.3}), 5Co_{99.25}(Ru_{0.75}), 5Co_{98.5}(Ru_{1.5}) and 5Co₉₇(Ru₃)].

Figure S6. Co 2p XPS spectra of calcined (a) 5Co, (b) 5Co_{99.7}(Ru_{0.3}) and (c) Ag₃-5Co₉₇.

Catalyst ^(a)	Promoter	Promoter content (a/a%)	Impregnation method ^(b)		
12Co	-	-	-		
5Co	-	-	-		
5Co _{98.5} -Pt _{1.5}	Pt				
5Co _{98.5} -Pd _{1.5}	Pd				
5Co _{98.5} -Ru _{1.5}	Ru	1.50%	$S - 1^{st}$ Co, 2^{nd} NM		
5Co _{98.5} -Ag _{1.5}	Ag				
5Co _{98.5} -Au _{1.5}	Au				
5Co _{98.5} -Ru _{1.5}			$S - 1^{st} Co, 2^{nd} Ru$		
Ru _{1.5} -5Co _{98.5}		1.50%	$S - 1^{st} Ru, 2^{nd} Co$		
$5Co_{98.5}(Ru_{1.5})$			Co-impregnation		
5Co _{99.97} (Ru _{0.03})		0.03%			
$5Co_{99.9}(Ru_{0.1})$	Ru	0.10%			
$5Co_{99.7}(Ru_{0.3})$		0.30%	Co imprognation		
5Co _{99.25} (Ru _{0.75})		0.75%	Co-impregnation		
$5Co_{98.5}(Ru_{1.5})$		1.50%			
5Co ₉₇ (Ru ₃)		3.00%			
5Co _{98.5} -Ag _{1.5}			S – 1 st Co, 2 nd Ag		
5Co _{98.5} (Ag _{1.5})		1.50%	Co-impregnation		
Ag _{1.5} -5Co _{98.5}	Ag		S – 1 st Ag, 2 nd Co		
Ag _{0.75} -5Co _{99.25}		0.75%			
Ag ₃ -5Co ₉₇		3.00%	S – 1 st Ag, 2 nd Co		
Ag ₅ -5Co ₉₅		5.00%			

Table S1. List of the catalysts prepared in this study

(a) All catalysts are supported over γ -Al₂O₃. (b) S stands for sequential impregnation.

#	Catalyst	Reaction	OL Conv		Se	lectivit	y (%)		OA Yield	Carbon
		Conditions ^{(a),(b)}	(%)	ON	OA	DOA	TOA	DOI	(%)	balance
1	5Co	RC-1	25	27	60	0.8	-	0.4	15	97
2	5Co _{98.5} -Pt _{1.5}	RC-1	44	15	45	26	-	0.4	20	95
3	$5Co_{98.5}$ -Pd _{1.5}	RC-1	32	14	40	34	4.3	0.3	13	97
4	$5Co_{98.5}$ -Ru _{1.5}	RC-1	29	22	60	0.8	-	0.8	17	95
5	5Co _{98.5} -Ag _{1.5}	RC-1	28	20	63	1.3	-	0.5	18	96
6	5Co _{98.5} -Au _{1.5}	RC-1	15	31	62	-	-	-	9.5	99
7	$Ru_{1.5}$ -5 $Co_{98.5}$	RC-1	31	24	65	1.1	1.3	1.0	20	98
8	$5Co_{98.5}(Ru_{1.5})$	RC-1	34	22	65	1.7	0.3	1.0	22	97
9	5Co _{98.5} (Ag _{1.5})	RC-1	31	19	63	1.6	0.4	0.9	19	96
10	Ag _{1.5} -5Co _{98.5}	RC-1	33	20	75	2.4	0.5	1.2	25	100
11	12Co	RC-2	52	8.4	79	7.0	1.3	1.0	41	98
12	5Co	RC-2	36	14	80	3.3	0.7	1.1	28	99
13	5Co _{99.97} (Ru _{0.03})	RC-2	38	13	79	2.9	0.4	1.1	30	99
14	$5Co_{99.9}(Ru_{0.1})$	RC-2	46	10	76	3.7	0.4	1.0	35	96
15	$5Co_{99.7}(Ru_{0.3})$	RC-2	50	10	81	4.8	0.3	1.1	40	99
16	5Co _{99.25} (Ru _{0.75})	RC-2	49	9.4	79	4.5	-	0.9	39	97
17	$5Co_{98.5}(Ru_{1.5})$	RC-2	41	13	81	1.8	-	1.1	33	99
18	5Co ₉₇ (Ru ₃)	RC-2	45	12	82	4.0	0.7	1	34	100
19	Ag _{0.75} -5Co _{99.25}	RC-2	46	10	81	4.5	0.5	0.9	37	99
20	Ag _{1.5} -5Co _{98.5}	RC-1	44	11	83	3.9	-	0.9	37	99
21	Ag ₃ -5Co ₉₇	RC-2	51	9.5	83	6.0	0.8	1.2	42	100
22	Ag ₅ -5Co ₉₅	RC-2	39	10	79	4.7	1.2	0.7	31	99

Table S2. List of catalytic results of all Co and Co bimetallic catalysts developed in this study.

(a) Reaction conditions RC-1: T = 180 °C, P = 101 kPa, OL : NH₃ : H₂ : N₂ (mol%) = 1 : 9 : 2.5 : 0.9, 1.8 mL.h⁻¹ OL, 510 mg catalyst, WHSV_{OL} = 2.9 h⁻¹. The catalysts were pre-reduced at 500 °C for 1 h before the reaction.

(b) Reaction conditions RC-2: T = 180 °C, P = 101 kPa, OL : NH₃ : H₂ : N₂ (mol%) = 1 : 9 : 3.4 : 0, 1.2 mL.h⁻¹ OL, 510 mg catalyst, WHSV_{OL} = 1.9 h⁻¹. The catalysts were pre-reduced at 500 °C for 1 h before the reaction.

Catalyst ^(a)	Band	$\begin{array}{c} \text{Co}_3\text{O}_4 \rightarrow \\ \text{CoO}^{\text{(b)}} \end{array}$	$CoO \rightarrow Co^{0 (b)}$		Reduction	CoAl ₂ O ₄ ^(b)	Ratio	
-		(α)	(β ₁)	(β ₂)	Temperature		β/α	
50	Position	297 °C	453 °С	595 ℃	< 500°C	>750°C	2.2	
500	H_2 uptake (mmol·g ⁻¹)	0.21	0.45	0.22	0.52	0.02	3.2	
	Position	131 °C	355 ℃		< 500 °C	>750 °C		
5Co _{98.5} -Pt _{1.5}	H ₂ uptake (mmol·g ⁻¹)	0.30	0.79		1.12	0.01	2.6	
5Co _{98.5} -Pd _{1.5}	Position	211 286 °C °C	362 °C	533 °C	< 500 °C	>750 °C	2.0	
	H_2 uptake (mmol·g ⁻¹)	0.15 0.14	0.40	0.41	0.83	0.02	2.8	
	Position	169 200 °C °C	346 °C	500 °C	< 500 °C	> 750 °C	2.0	
3C0 _{98.5} -Ku _{1.5}	H ₂ uptake (mmol·g ⁻¹)	0.07 0.20	0.75	0.05	1.04	0.02	5.0	
50- 4-	Position	289 °C	460 °C	612 °C	< 500°C	>750°C	2.2	
5Co _{98.5} -Ag _{1.5}	H ₂ uptake (mmol·g ⁻¹)	0.21	0.57	0.12	0.56	0.02	3.3	
	Position	342 °C	462 °C		< 500°C	>750°C	2.4	
3C0 _{98.5} -Au _{1.5}	H_2 uptake (mmol·g ⁻¹)	0.26	0.54		0.62	0.06	2.4	

Table S3. Main bands observed in the H₂-TPR profiles of 5Co-NM bimetallic catalysts promoted by Pt, Pd, Ag, Au and Ru (1.5% a/a) using the sequential impregnation protocol

(a) Supported over γ -Al₂O₃. (b) H₂ consumption calculated after curve deconvolution using Gaussian distributions. (c) H₂ consumption calculated by integrating the H₂-TPR profiles using trapezoidal numerical integration.

Catalyst ^(a)	Band	$\begin{array}{c} \text{Co}_3\text{O}_4 \rightarrow \\ \text{CoO}^{(b)} \end{array}$		$) \rightarrow 0 (b) (b)$	Reduction Temperature ^(c)	CoAl ₂ O ₄ ^(b)	Ratio β/α	
	Position	$\frac{(\alpha)}{160-200}$	(p ₁) 346	(p ₂) 500	< 500 °C	> 750 °C		
	1 OSITION	°C °C	°C	°C	< 300°C	- 750 C	• •	
5Co _{1.5} -Ru _{98.5}	H ₂ uptake (mmol·g ⁻¹)	0.07 0.20	0.75	0.05	1.04	0.02	3.0	
	Position	221 °C	404 °C	-	< 500 °C	>750 °C		
Ru _{1.5} -5Co _{98.5}	H_2 uptake (mmol·g ⁻¹)	0.26	0.69	-	0.92	0.03	2.7	
5Co _{98.5} (Ru _{1.5})	Position	148 °C	305 °C	-	< 500 °C	>750 °C		
	H_2 uptake (mmol·g ⁻¹)	0.24	0.71	-	1.02	0.03	3.0	
50	Position	289 °C	460 °C	612 °С	< 500°C	> 750°C	2.2	
5C0 _{98.5} -Ag _{1.5}	H ₂ uptake (mmol·g ⁻¹)	0.21	0.57	0.12	0.56	0.02	3.3	
A. 5Co	Position	258 °C	373 °C	530 °C	< 500°C	>750°C	2.2	
Ag _{1.5} -5C0 _{98.5}	H_2 uptake (mmol·g ⁻¹)	0.23	0.63	0.12	0.96	0.03	3.3	
5Co (Ag)	Position	266 °C	360 °C	523 °C	< 500°C	>750°C	2.0	
$5C0_{98.5}(Ag_{1.5})$	H ₂ uptake (mmol·g ⁻¹)	0.22	0.47	0.17	0.80	0.04	2.9	

Table S4. Main bands observed in the H_2 -TPR profiles of 5Co catalysts promoted by Ag and Ru (1.5% a/a) as a function of the impregnation sequence

(a) Supported over γ -Al₂O₃. (b) H₂ consumption calculated after curve deconvolution using Gaussian distributions. (c) H₂ consumption calculated by integrating the H₂-TPR profiles using trapezoidal numerical integration.

Catalyst ^(a)	Band	Co ₃ C Co	$D_4 \rightarrow D_{(b)}$	CoO -	\rightarrow Co ⁰	Reduction	CoAl ₂ O ₄ ^(c)	Ratio
-		(0	χ)	(β ₁)	(β ₂)	temperature		β/α
	Position	274	4°C	446°	569°C	< 500°C	>750°C	
5Co _{99.97} (Ru _{0.03})	H_2	0.	23	0.54	0.11	0.72	0.02	
	uptake (mmol·g ⁻ ¹)							2.8
	Position	218°C	255°C	436°C	584	< 500°C	> 750°C	
	H_2	0.10	0.17	0.68	0.05	0.86	0.01	
5Co _{99.9} (Ru _{0.1})	uptake (mmol·g ⁻ ¹)							2.7
	Position	176°C	207°C	394°C	536 °C	< 500°C	>750°C	
5C0 _{99.7} (Ru _{0.3})	H_2 uptake (mmol·g ⁻ ¹)	0.06	0.21	0.73	0.04	1.01	0.03	2.8
	Position	160	D°C	337°C		< 500°C	>750°C	
5Co _{99.25} (Ru _{0.75})	H_2 uptake (mmol·g ⁻ ¹)	0.	27	0.75	-	1.01	0.03	2.8
	Position	148	3 ℃	305 °C	-	< 500 °C	>750 °C	
5Co _{98.5} (Ru _{1.5})	H_2 uptake (mmol·g ⁻ ¹)	0.24		0.71	-	1.02	0.03	3.0
	Position	14.	3°C	271°C	-	< 500°C	> 750°C	
5Co ₉₇ (Ru ₃)	H_2 uptake (mmol·g ⁻ ¹)	0.	26	0.73	-	0.98	0.02	2.8

Table S5. Main bands observed in the H_2 -TPR profiles of $5Co_X(Ru_Y)$ catalysts as a function of the Ru loading.

(a) Supported over γ -Al₂O₃. (b) H₂ consumption calculated after curve deconvolution using Gaussian distributions. (c) H₂ consumption calculated by integrating the H₂-TPR profiles using trapezoidal numerical integration.

Catalyst ^(a)	Band	$\begin{array}{cc} Co_3O_4 \rightarrow & CoO \rightarrow Co^0 \\ CoO^{(b)} & ^{(b)} \end{array}$		$\rightarrow Co^0$	Reduction	CoAl ₂ O ₄ ^(c)	Ratio	
		(α)	(β ₁)	(β ₂)	temperature		p/α	
Aa	Position	261 °C	379°C	544°C	< 500°C	>750°C		
Ag _{0.75} - 5Co _{99.25}	H ₂ uptake (mmol·g ⁻¹)	0.25	0.64	0.15	0.90	0.03	3.2	
Ag _{1 5} -	Position	258 °C	373 °C	530 °C	< 500°C	>750°C		
Ag _{1.5} - 5Co _{98.5}	H_2 uptake (mmol·g ⁻¹)	0.23	0.63	0.12	0.96	0.03	3.3	
	Position	263 °C	360 °C	546 °C	< 500°C	>750°C	2 0 (c)	
Ag ₃ -5C0 ₉₇	H_2 uptake (mmol·g ⁻¹)	0.21	0.73	0.10	0.99	0.02	3.9 ⁽⁰⁾	
	Position	248 °C	342 °C	533 °C	< 500°C	>750°C	5 9(c)	
Ag ₅ -5C0 ₉₅	H ₂ uptake (mmol·g ⁻¹)	0.14	0.72	0.06	0.96	0.02	3.8 ^(c)	

Table S6. Main bands observed in the H_2 -TPR profiles of 5%Ag_Y-Co_X catalysts as a function of the Ag loading.

(a) Supported over γ -Al₂O₃. (b) H₂ consumption calculated after curve deconvolution using Gaussian distributions. (c) H₂ consumption calculated by integrating the H₂-TPR profiles using trapezoidal numerical integration. (c) Highly overlapping bands, difficult to deconvolute.

			Co 2p _{3/2}			Co 2p _{1/2}	
Catalyst		Band I	Band II	Band III	Band I	Band II	Band III
		[Co(III)]	[Co(II)]	Satellite	[Co(III)]	[Co(II)]	Satellite
5Co	BE (eV)	780.8 (1.0)	782.4 (1.2)	786.3 (3.2)	796.5 (1.0)	798.3 (1.0)	802.9 (2.6)
	%	26%	25%	49%	24%	24%	52%
5Co (Du)	BE (eV)	780.8 (1.0)	782.4 (1.2)	786.3 (3.0)	796.7 (1.0)	798.2 (0.9)	802.9 (2.6)
5C0 _{99.7} (Ku _{0.3})	%	24%	22%	54%	28%	21%	51%
	BE (eV)	780.7 (1.0)	782.5 (1.2)	786.5 (3.2)	796.7 (1.0)	798.3 (1.0)	802.9 (2.6)
Ag3-5C097	%	27%	22%	51%	29%	20%	51%

Table S7. Results for band deconvolution for the Co 2p XPS spectra measured on the 5Co, $5Co_{99.7}(Ru_{0.3})$ and Ag₃-5Co₉₇ catalysts.

		Ru 3d _{5/2}							
Catalyst		Band I	Band II	Band III	Band IV				
		$[Ru(0)_I]$	$[Ru(0)_{II}]$	$[Ru(0)_{III}]$	(RuO ₂)				
	BE (eV)	277.1 (0.3)	278.2 (0.2)	279.2 (0.2)	-				
$5C0_{99.7}(Ku_{0.3})$	%	50%	IBand IIBand III h_{I} $[Ru(0)_{II}]$ $[Ru(0)_{III}]$ 0.3 $278.2 (0.2)$ $279.2 (0.2)$ 21% 28% $278.0 (0.1)$ $279.6 (0.4)$ 20% 54%	-					
0.0260.1	BE (eV)	-	278.0 (0.1)	279.6 (0.4)	280.6 (0.2)				
0.020KU	%	-	20%	54%	26%				

Table S8. Results for band deconvolution for the Ru 3d XPS spectra measured on the $5Co_{99.7}(Ru_{0.3})$ and 0.026Ru catalysts.

			Ag 3d _{5/2}			Ag 3d _{3/2}	
Catalyst		Band I	Band II	Band III	Band I	Band II	Band III
		$[Ag(0)_I]$	$[Ag(0)_{II}]$	Ag(I)	$[Ag(0)_I]$	$[Ag(0)_{II}]$	Ag(I)
Ag ₃ -5Co ₉₇	BE (eV)	365.8 (1.0)	368.0 (0.5)	368.9 (0.7)	372.2 (1.0)	374.2 (0.6)	375.8 (0.5)
	%	25%	46%	29%	29%	42%	29%
	BE (eV)	365.8 (1.0)	368.0 (0.5)	368.7 (0.7)	372.2 (0.8)	374.2 (0.4)	374.6 (0.8)
0.2/Ag	%	11%	48%	40%	12%	43%	45%

Table S9. Results for band deconvolution for the Ag 3d XPS spectra measured on the Ag₃-5 Co_{97} and 0.27Ag catalysts.