Group 4 permethylindenyl constrained geometry complexes for ethylene polymerisation catalysis

Thomas J. Williams, Jean-Charles Buffet, Zoë R. Turner, and Dermot O'Hare

Chemistry Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, OX1 3TA, Oxford, UK.

Table of Contents

1 Exp	Experimental techniques and physical methods	
2 NM	AR spectroscopy	
2.1	Solution NMR spectroscopy	
2.2	Support procedure	
2.3	Solid state NMR spectroscopy	S17
3 X-1	ray crystallography	
4 Pol	lymerisation study	
4.1	Slurry phase polymerisation	
4.2	Scanning electron microscopy	
5 Ref	ferences	

1 Experimental techniques and physical methods

General procedures. Air and moisture sensitive techniques were undertaken in an inert atmosphere of nitrogen, using standard Schlenk techniques,¹ on a dual manifold nitrogen/vacuum line or in an MBraun Unilab glovebox. Pentane, hexane, toluene, benzene, were dried using an MBraun SPS 800 solvent purification system. Tetrahydrofuran (THF) and diethyl ether were distilled from purple Na/benzophenone indicator. Amines (*tert*-butylamine, *iso*-propylamine, 4-*tert*-butylaniline, 4-*n*-butylaniline, aniline, *n*-butylamine and 2,6-diisopropylaniline) were freeze-pump-thaw degassed 3 times. The amines and THF were stored over pre-activated 3 Å molecular sieves; hexane, benzene and toluene were stored on a potassium mirror. Deuterated solvents were dried over K (C₆D₆) or CaH₂ (C₅D₅N), freeze-pump-thaw degassed, vacuum transferred and stored over pre-activated 3 Å molecular sieves. Ind*SiMe₂Cl was synthesised using a literature procedure from hexamethylindene (Ind#H).² Lithium amides were prepared via lithiation of an amine with 1.1 equivalents of *n*-BuLi. TiCl₄·2THF was synthesised *via* a literature procedure from TiCl₄.³

Solution phase NMR spectroscopy. NMR spectra were recorded on either a 400 MHz Bruker Avance III HD nanobay spectrometer or a 500 MHz Bruker Avance III HD nanobay spectrometer. ¹H and ¹³C{¹H} spectra were recorded at 298 K unless otherwise stated, referenced internally to the residual protio-solvent peak in the deuterated solvent. Air-sensitive samples were prepared in a glovebox under an inert atmosphere, using dried deuterated solvents in Young's NMR tubes.

Solid-state NMR spectroscopy. All experiments were carried out by Dr. Nicholas Rees (University of Oxford). Compounds were prepared in a glovebox under a nitrogen atmosphere and sealed in 5 mm Young's type NMR tubes. Spectra were recorded on a Bruker Avance III HD NanoBay 400.2 MHz Solid-state NMR spectrometer, samples were spun at the magic angle (54.71°) at spin rates 10 kHz for ¹³C CP-MAS, ²⁷Al DP-MAS, and ²⁹Si CP-MAS. ¹³C NMR spectra were referenced to adamantane, ²⁷Al to Al(NO₃)₃.

X-ray crystallography. Crystals were mounted on MiTeGen MicroMounts using perfluoropolyether oil and rapidly transferred to a goniometer head on a diffractometer fitted with and Oxford Cryosystems Cryostream open-flow nitrogen-cooling device.⁴ Data collections were carried out at 150 K on an Oxford Diffraction Supernova Diffractometer using mirror-monochromated Cu $K\alpha$ radiation (λ = 1.54178 Å) and data was processed using CrysAlisPro.⁵ The structures were solved using direct methods (SIR-92)⁶ or using a charge-flipping procedure (SuperFlip)⁷ and refined by full-matrix least squares using the WinGX programme suite.⁸ Interplanar distances and angles were calculated using PLATON.⁹ Molecular structures were generated using ORTEP3.¹⁰ Percentage buried volume was calculated using SambVca.¹¹

Elemental analysis. Samples were prepared in a glovebox and measured by Mr Stephen Boyer (London Metropolitan University).

Scanning electron microscopy. Scanning electron microscopy (SEM) images were collected by Mr Phakpoom Angpanitcharoen and Miss Jessica Lamb (University of Oxford), on a JEOL JSM 6610 scanning electron microscope. Particles were cast onto a silica wafer. Before imaging, the samples were coated with platinum to prevent charging, improving the image quality. Energy dispersive X-ray (EDX) spectroscopy was also performed on this instrument to determine the relative percentages of elements on the surface.

Inductively Coupled Plasma optical emission spectrometry (ICP-OES). ICP-OES data were collected on a Agilent 5110 ICP-OES with VistaChip II CCD detector at HTExplore (University of Naples).

Differential Scanning Calorimetry (DSC). Samples were run on a DSC3+ (Mettler Toledo, Ltd) using 5 mg of polyethylene in a sealed aluminium 100 μ L crucible. An empty crucible was used as a reference, and the DSC was calibrated using indium. Samples were heated from 25 to 250 °C and cooled back again at a rate of 5 °C per minute, a total of three cycles were run. Polymer melt temperature values were taken from the third heating cycle.

2 NMR spectroscopy

2.1 Solution NMR spectroscopy

Fig. S1 ¹H NMR spectrum of ^{Me2}SB(^{*t*-Bu}N,I*)H₂ (400.2 MHz, C₆D₆, 298 K).

Fig. S2 ¹H NMR spectrum of ${}^{Me2}SB({}^{i-Pr}N,I^*)H_2$ (400.2 MHz, C₆D₆, 298 K).

Fig. S3 ¹H NMR spectrum of ${}^{Me_2}SB({}^{n-Bu}N,I^*)H_2$ (499.9 MHz, C₆D₆, 298 K).

Fig. S4 ${}^{13}C{}^{1}H$ NMR spectrum of ${}^{Me_2}SB({}^{n-Bu}N, I^*)H_2$ (125.7 MHz, C₆D₆, 298 K).

Fig. S5 ¹H NMR spectrum of ${}^{Me_2}SB({}^{4\text{-}n\text{-}Bu\text{-}C_6H_4}N, I^*)H_2$ (400.2 MHz, C₆D₆, 298 K).

Fig. S6 ¹H NMR spectrum of $^{Me_2}SB(^{4-n-Bu-C_6H_4}N, I^*)H_2$ (400.2 MHz, C₆D₆, 298 K).

Fig. S7 ¹H NMR spectrum of ${}^{Me2}SB({}^{t-Bu}N,I^*)Li_2$ (400.2 MHz, C₅D₅N, 298 K).

Fig. S8 ¹H NMR spectrum of ${}^{Me_2}SB({}^{i-Pr}N,I^*)Li_2$ (400.2 MHz, C₅D₅N, 298 K).

Fig. S9 ¹H NMR spectrum of ^{Me2}SB(^{*n*-Bu}N,I*)Li₂ (400.2 MHz, C₅D₅N, 298 K).

Fig. S10 ¹H NMR spectrum of ^{Me2}SB(^{4-n-Bu-C6H4}N,I*)Li₂ (400.2 MHz, C₅D₅N, 298 K).

Fig. S11 ¹H NMR spectrum of ^{Me2}SB(^{4-t-Bu-C6H4}N,I*)Li₂ (400.2 MHz, C₅D₅N, 298 K).

Fig. S12 ¹H NMR spectrum of ^{Me2}SB(^{Ph}N,I*)Li₂ (400.2 MHz, C₅D₅N, 298 K).

Fig. S13 ¹H NMR spectrum of ^{Me2}SB(^{*t*-Bu}N,I*)TiCl₂ (400.2 MHz, C₆D₆, 298 K).

50 145 140 135 130 125 120 115 110 105 100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 5 (ppm) **Fig. S14** ¹³C{¹H} NMR spectrum of ^{Me2}SB(^{t-Bu}N,I*)TiCl₂ (125.7 MHz, C₆D₆, 298 K).

Fig. S15 ¹H NMR spectrum of ^{Me2}SB(^{*i*-Pr}N,I*)TiCl₂ (400.2 MHz, C₆D₆, 298 K).

 $\label{eq:Fig. S16 13} \textbf{Fig. S16} \ ^{13}C\{^{1}H\} \ \textbf{NMR} \ spectrum \ of \ ^{Me_2}SB({^{i\text{-}Pr}N},I^*)TiCl_2 \ (125.7 \ \text{MHz}, \ C_6D_6, \ 298 \ \text{K}).$

Fig. S17 ¹H NMR spectrum of ^{Me2}SB(^{*n*-Bu}N,I*)TiCl₂ (400.2 MHz, C₆D₆, 298 K).

50 145 140 135 130 125 120 115 110 105 100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 5 δ(ppm)

Fig. S18 ¹³C{¹H} NMR spectrum of ^{Me2}SB(^{*n*-Bu}N,I*)TiCl₂ (125.7 MHz, C₆D₆, 298 K).

Fig. S19 ¹H NMR spectrum of $^{Me_2}SB(^{4-n-Bu-C_6H_4}N,I^*)TiCl_2$, (pentane: 0.87 and 1.23 ppm; 499.9 MHz, C_6D_6 , 298 K).

Fig. S20 ${}^{13}C{}^{1}H$ NMR spectrum of ${}^{Me_2}SB({}^{4\text{-}n\text{-}Bu\text{-}C_6H_4}N, I^*)TiCl_2$ (125.7 MHz, C₆D₆, 298 K).

Fig. S21 ¹H NMR spectrum of $^{Me_2}SB(^{4-t-Bu-C_6H_4}N, I^*)TiCl_2$ (499.9 MHz, C₆D₆, 298 K).

Fig. S22 ${}^{13}C{}^{1}H$ NMR spectrum of ${}^{Me_2}SB({}^{4-t-Bu-C_6H_4}N, I^*)TiCl_2$ (125.7 MHz, C₆D₆, 298 K).

Fig. S23 ¹H NMR spectrum of ${}^{Me2}SB({}^{Ph}N,I^*)TiCl_2$ (pentane: 0.87 and 1.23 ppm; 499.9 MHz, C₆D₆, 298 K).

Fig. S24 ¹³C{¹H} NMR spectrum of ^{Me2}SB(^{Ph}N,I*)TiCl₂(125.7 MHz, C₆D₆, 298 K).

2.2 Support Procedure

Fig. S25 Pictorial representation of complex immobilisation for solid catalyst based on solid polymethylaluminoxane (sMAO) and ^{Me2}SB(^RN,I*)TiCl₂, sMAO-^{Me2}SB(^RN,I*)TiCl₂.

Complex	Time in slurry (h)	Weight	Weight	Moles	Moles	Al:Ti
		% Al	% Ti	Al	Ti	ratio
$^{Me_2}SB(t-Bu}N,I^*)TiCl_2$	0	26.2	0.24	0.971	0.005	194:1
Me2SB(<i>i</i> -PrN,I*)TiCl ₂	1	28.2	0.25	1.047	0.005	199:1
Me2SB(<i>i</i> -PrN,I*)TiCl ₂	2	28.6	0.24	1.061	0.005	208:1
$^{Me_2}SB(^{i-Pr}N,I^*)TiCl_2$	3	28.2	0.25	1.047	0.005	202:1

 $\textbf{Table S1. ICP-OES data of sMAO-}^{Me_2}SB({}^{\textit{t-Bu}}N, I^{\boldsymbol{*}})TiCl_2 \text{ and } sMAO-}^{Me_2}SB({}^{\textit{i-Pr}}N, I^{\boldsymbol{*}})TiCl_2.$

Fig. S26 Stack plot of (a) ${}^{13}C{}^{1}H$ NMR spectrum of ${}^{Me_2}SB({}^{Ph}N,I^*)TiCl_2$ (125.7 MHz, C₆D₆, 298 K), (b) ${}^{13}C$ CP-MAS (100.6 MHz) NMR spectrum of sMAO- ${}^{Me_2}SB({}^{Ph}N,I^*)TiCl_2$ and (c) ${}^{13}C$ CP-MAS (100.6 MHz) NMR spectrum of sMAO.

Fig. S27 ¹³C CP-MAS (100.6 MHz) NMR spectrum of sMAO-^{Me2}SB(^{Ph}N,I*)TiCl₂.

Fig. S28 ²⁹Si CP-MAS (79.4 MHz) NMR spectrum of sMAO-^{Me2}SB(^{Ph}N,I*)TiCl₂.

Fig. S29 ²⁷Al DP-MAS hahnecho (104.2 MHz) NMR spectrum of sMAO-^{Me2}SB(^{Ph}N,I*)TiCl₂.

Fig. S30 Stack plot of (a) ${}^{13}C{}^{1}H$ NMR spectrum of ${}^{Me_2}SB({}^{t-Bu}N,I^*)TiCl_2$ (125.7 MHz, C₆D₆, 298 K), (b) ${}^{13}C$ CP-MAS (100.6 kHz) NMR spectrum of sMAO- ${}^{Me_2}SB({}^{t-Bu}N,I^*)TiCl_2$ and (c) ${}^{13}C$ CP-MAS (100.6 kHz) NMR spectrum of sMAO.

Fig. S31 ¹³C CP-MAS (100.6 kHz) NMR spectrum of sMAO-^{Me2}SB(^{t-Bu}N,I*)TiCl₂.

Fig. S32 ²⁹Si CP-MAS (79.4 MHz) NMR spectrum of sMAO-^{Me2}SB(^{*t*-Bu}N,I*)TiCl₂.

Fig. S33 ²⁷Al DP-MAS hahnecho (104.2 kHz) NMR spectrum of sMAO-^{Me2}SB(^{*t*-Bu}N,I*)TiCl₂.

3 X-ray crystallography

Complex	nplex $^{Me2}SB(^{t-Bu}N,I^*)TiCl_2$ $^{Me2}SB(^{t-Pr}N,I^*)TiCl_2$		$^{Me_2}SB(^{4-t-Bu-C_6H_4}N, I^*)TiCl_2$			
Crystal data						
Chemical formula	C ₂₁ H ₃₃ Cl ₂ NSiTi	C ₂₀ H ₃₁ Cl ₂ NSiTi	$C_{27}H_{37}Cl_2NSiTi\cdot C_5H_{12}$			
$M_{ m r}$	446.37	432.35	594.61			
Crystal system, space group	Triclinic, P ⁻¹	Monoclinic, $P2_1/c$	Triclinic, P^{-1}			
Temperature (K)	150	150	150			
<i>a</i> , <i>b</i> , <i>c</i> (Å)	8.2680 (6), 11.8794 (7), 12.9943 (7)	11.5225 (2), 12.9843 (2), 15.2891 (2)	9.9660 (2), 12.4507 (4), 15.2615 (4)			
α, β, γ (°)	71.395 (5), 78.040 (5), 70.734 (6)	90, 104.979 (2), 90	112.445 (3), 108.902 (2), 90.786 (2)			
$V(Å^3)$	1134.41 (13)	1839.60 (10)	1635.29 (8)			
Ζ	2	4	2			
Radiation type	Cu Ka	Cu Ka	Cu Ka			
μ (mm ⁻¹)	5.89	6.04	4.21			
Crystal size (mm)	$0.16\times0.08\times0.06$	$0.20\times0.15\times0.13$	$0.37 \times 0.33 \times 0.06$			
	Data Co	ollection				
Diffractometer	SuperNova, Dual, Cu at zero, Atlas diffractometer	SuperNova, Dual, Cu at zero, Atlas diffractometer	SuperNova, Dual, Cu at zero, Atlas diffractometer			
Absorption correction	Multi-scan <i>CrysAlis PRO</i> 1.171.38.41 (Rigaku Oxford Diffraction, 2015) Empirical absorption correction using spherical harmonics, implemented in SCALE3	Multi-scan <i>CrysAlis PRO</i> 1.171.38.41 (Rigaku Oxford Diffraction, 2015) Empirical absorption correction using spherical harmonics, implemented in SCALE3	Multi-scan <i>CrysAlis PRO</i> 1.171.38.41 (Rigaku Oxford Diffraction, 2015) Empirical absorption correction using spherical harmonics, implemented in SCALE3			

 Table S2: Selected experimental crystallographic data.

	ABSPACK scaling algorithm.	ABSPACK scaling algorithm.	ABSPACK scaling algorithm.
T_{\min}, T_{\max}	0.771, 1.000	0.578, 1.000	0.444, 1.000
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	9522, 4437, 3763	26674, 4617, 4178	18216, 6669, 6313
$R_{ m int}$	0.030	0.032	0.035
	Refin	ement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.037, 0.129, 1.17	0.030, 0.094, 0.96	0.040, 0.119, 0.95
No. of reflections	4437	4617	6669
No. of parameters	246	235	395
No. of restraints	0	0	42
$(\Delta/\sigma)_{max}$	0.001	0.001	0.001
$\Delta \rho_{max}, \Delta \rho_{min} \ (e \ \text{\AA}^{-3})$	0.46, -0.45	0.38, -0.35	0.52, -0.28

Computer programs: *CrysAlis PRO* 1.171.38.41 (Rigaku OD, 2015), SUPERFLIP. Palatinus, L.; Chapuis, G. J. Appl. Cryst. 2007, 40, 786-790, Sir-92. Altomare, A.; Cascarano, G.; Giacovazzo, C.; Guagliardi, A. J. Appl. Cryst. 1994, 27, 435., *SHELXL2014* (Sheldrick, 2014), *ORTEP-3 for Windows*. Farrugia, L. J. J. Appl. Cryst. 1997, 30, 565.

4 **Polymerisation study**

4.1 Slurry phase polymerisation

Complex	Т	Time	Activity \pm
	(°C)	(minutes)	standard deviation
			(kg _{PE} /mol _{Ti} /h/bar)
sMAO- ^{Me2} SB(^{t-Bu} N,I*)TiCl ₂	50	30	2958±215
	60	30	3602±132
	70	30	3524±275
	80	30	2981±164
	90	30	2565±38
	70	5	5562±363
	70	15	4580±158
	70	60	2973±138
sMAO- ^{Me2} SB(^{<i>i</i>-Pr} N,I*)TiCl ₂	50	30	1293±12
	60	30	1402±128
	70	30	1287±86
	80	30	1222±99
	90	30	976±49
	70	5	1916±381
	70	15	1521±75
	70	60	848±10
sMAO-Me2SB(n-BuN,I*)TiCl2	50	30	848±37
	60	30	666±15
	70	30	837±9
	80	30	814±66
	90	30	728±24
	70	5	2340±337
	70	15	1244±63
	70	60	360±32
sMAO- ^{Me2} SB(^{4-n-Bu-C6H4} N,I*)TiCl ₂	50	30	313±9
	60	30	357±9
	70	30	365±3
	80	30	409±11
	90	30	266±12
	70	5	666±67
	70	15	524±8
	70	60	259±15
$sMAO-Me_2SB(4-r-Bu-C_6H_4N, I^*)T_1Cl_2$	50	30	289±21
	60	30	323±20
	70	30	321±8
	80	30	308±64
	90	30	149±21
	70	5	632±32
	70	15	461±22
	7/0	60	255±4
$sMAO-Me_2SB(PnN,I^*)TiCl_2$	50	30	300±6
	60	30	288±3
	70	30	263±20
	80	30	224±6

Table S3. Slurry phase ethylene polymerisation using sMAO supported catalysts.

sMAO- ^{Me2} SB(^{Ph} N,I*)TiCl ₂	90	30	161±6
	70	5	441±25
	70	15	375±31
	70	60	235±11
sMAO- ^{Me2} SB(^{t-Bu} N,Cp*)TiCl ₂	50	30	979±96
	60	30	1308±25
	70	30	1289±17
	80	30	1105±71
	90	30	716±18
$sMAO-Me_2SB(t-Bu}N,I^*)TiCl_2$	50	30	895±36
(A1:Ti = 100:1)	60	30	1033±61
	70	30	1160±35
	80	30	983±52
	90	30	735±50

4.2 Scanning electron microscopy

Fig S34. SEM images of polyethylene synthesised using sMAO-^{Me2}SB(*t*-BuN,I*)TiCl₂. Polymerisation conditions: 2 bar ethylene, 50 mL hexanes, 10 mg pre-catalyst, 150 mg TIBA, 30 minutes, 70 °C.

Fig S35. SEM images of polyethylene synthesised using sMAO-^{Me2}SB(^{*i*-Pr}N,I*)TiCl₂. Polymerisation conditions: 2 bar ethylene, 50 mL hexanes, 10 mg pre-catalyst, 150 mg TIBA, 30 minutes, 70 °C.

Fig S36. SEM images of polyethylene synthesised using sMAO-^{Me2}SB(*n*-BuN,I*)TiCl₂. Polymerisation conditions: 2 bar ethylene, 50 mL hexanes, 10 mg pre-catalyst, 150 mg TIBA, 30 minutes, 70 °C.

Fig S37. SEM images of polyethylene synthesised using sMAO- ^{Me2}SB(^{4-n-Bu-C6H4}N,I*)TiCl₂. Polymerisation conditions: 2 bar ethylene, 50 mL hexanes, 10 mg pre-catalyst, 150 mg TIBA, 30 minutes, 70 °C.

Fig S38. SEM images of polyethylene synthesised using $sMAO-Me_2SB(4-t-Bu-C_6H_4N,I^*)TiCl_2$. Polymerisation conditions: 2 bar ethylene, 50 mL hexanes, 10 mg pre-catalyst, 150 mg TIBA, 30 minutes, 70 °C.

Fig S39. SEM images of polyethylene synthesised using sMAO-^{Me2}SB(^{Ph}N,I*)TiCl₂. Polymerisation conditions: 2 bar ethylene, 50 mL hexanes, 10 mg pre-catalyst, 150 mg TIBA, 30 minutes, 70 °C.

5 References

- 1 D. F. Shriver, *The Manipulation of Air-Sensitive Compounds*, 2nd edn., 1986.
- 2 F. M. Alías, S. Barlow, J. S. Tudor, D. O'Hare, R. T. Perry, J. M. Nelson and I. Manners, J. Organomet. Chem., 1997, **528**, 47–58.
- J. P. Fackler, *Inorganic Syntheses*, John Wiley & Sons, Inc., Hoboken, NJ, USA, 1982, vol. 21.
- 4 J. Cosier and A. M. Glazer, J. Appl. Crystallogr., 1986, **19**, 105–107.
- 5 CrysAlisPRO, Oxford Diffraction /Agilent Technologies UK Ltd, Yarnton, England.
- 6 Altomare, A.; Cascarano, G.; Giacovazzo, C.; Guagliardi, A.; Burla, M. C.; Polidori, G.; Camalli, M. J. Appl. Crystallogr. **1994**, 27, 435.
- 7 L. Palatinus and G. Chapuis, J. Appl. Crystallogr., 2007, 40, 786-790.
- 8 L. J. Farrugia, J. Appl. Crystallogr., 1999, 32, 837-838.
- 9 A. L. Spek, J. Appl. Crystallogr., 2003, 36, 7-13.
- 10 L. J. Farrugia, J. Appl. Crystallogr., 1997, 30, 565.
- 11 L. Falivene, R. Credendino, A. Poater, A. Petta, L. Serra, R. Oliva, V. Scarano and L. Cavallo, *Organometallics*, 2016, **35**, 2286–2293.