Supporting information

Highly efficient removal of organic pollutants by ultrahighsurface-area-ethynylbenzene-based conjugated microporous polymers via adsorption-photocatalysis synergy

Junhui Wang[†], Huangsheng Yang[†], Long Jiang[†], Shuqin Liu[†], Zhengping Hao[‡], Jie Cheng^{‡*}, Gangfeng Ouyang^{†*}

[†] MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, No. 135, Xingang Xi Road, Guangzhou, Guangdong, 510275, China

[‡]National Engineering Laboratory for VOCs Pollution Control Material & Technology, University of Chinese Academy of Sciences, Beijing, 100049, China

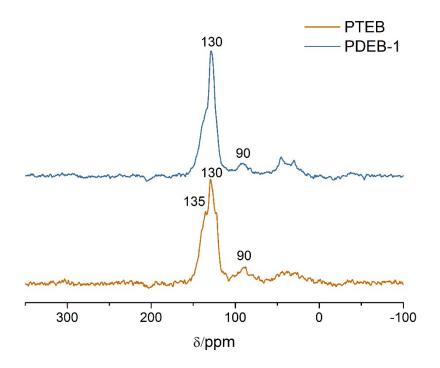


Figure S1. Solid-state NMR spectra for PTEB and PDEB-1.

Sample	C (wt.%)	H (wt.%)	Pd (wt.%)
PTEB	93.71	4.55	0.0383
PDEB-1	93.68	4.28	0.0257
PDEB-2	93.83	4.94	0.0932

 Table S1. Elemental analysis and ICP-MS results of the catalysts.

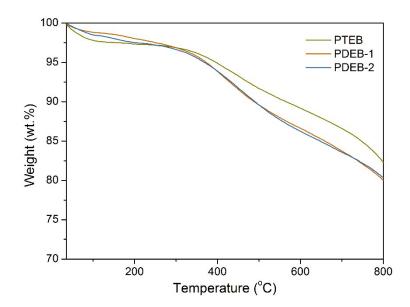


Figure S2. Thermogravimetric curves for PTEB, PDEB-1 and PDEB-2 materials

Materials —	Pseudo-first-order model			Pseudo-second-order model			
	k_1	$q_{e,1}$	R ²	k ₂	$q_{e,2}$	R ²	
PTEB	0.102	200	0.999	3.890	173	0.858	
PDEB-1	0.076	196	0.991	2.210	156	0.782	
PDEB-2	0.022	104	0.943	0.00094	79	0.493	

Table S2. The pseudo-first-order and pseudo-second-order parameters and the correlation coefficients (R^2) of the adsorption kinetic models.

Figure S3. The fitting curves of Langmuir and Freundlich model for the

adsorption isotherms of RhB on the polymers.

Materials —	Lar	Langmuir model			Freundlich model		
	q _m	b	R ²	K	n	R ²	
PTEB	637	45	0.742	569	21	0.962	
PDEB-1	646	66	0.754	583	24	0.845	
PDEB-2	185	0.32	0.853	71	4.2	0.955	

Table S3. The constants of Langmuir and Freundlich isotherms for RhB adsorption onthe three polymers at 25 °C.

To prove the elution process is effective to elute all the RhB adsorbed on the photocatalysts:

5 mg of PDEB-1 was dispersed in 50 mL of RhB solution (20 mg/L) and stirred until RhB was totally adsorbed (the UV-Vis Absorbance of the supernatant is zero). After been kept still for 2 days, most of the water was removed and then the residue (catalyst and little water) was dried at 100 °C under vacuum for 24 h. After then, 50 mL of methanol was added and mixed with the dried catalyst, and treated by ultrasound under 50 °C for 30 min. The eluent of RhB from the catalyst was tested by the UV-Vis.

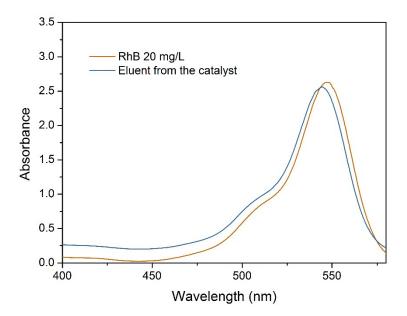


Figure S4. UV-Vis spectra of the RhB solution (20 mg/L) and the eluent from the

catalyst.

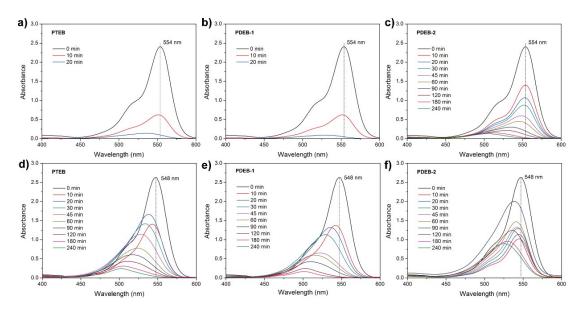


Figure S5. Temporal UV-Vis absorption spectral changes for the RhB solution

(supernatant: a-c; eluent: d-f) as a function of irradiation time photocatalysized by

three conjugated polymers

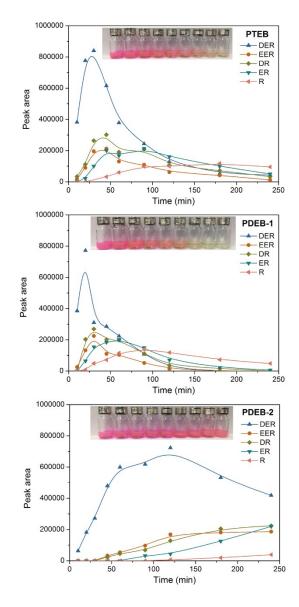


Figure S6. Variations in the distribution of the intermediate products in the

corresponding eluents.

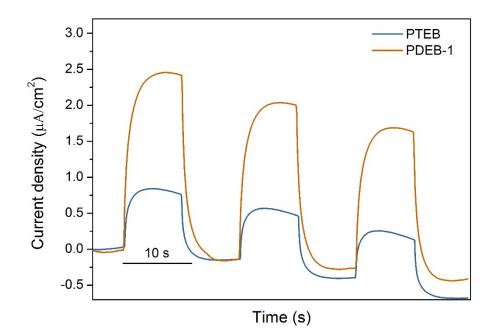


Figure S7. The photocurrent generated by PTEB and PDEB-1 under visible light.

Materials	C _{catalyst}	C _{RhB}	Treating	Removal	Removal	Ref.	
	(mg/L) ^a	(mg/L)	time (min)	ratio	rate (h ⁻¹) ^b		
PDEB-1	100	20	20	98%	0.588	This	
						work	
Py-BF-CMP	200	75	40	95%	0.534	1	
$g-C_3N_4/Nb_2O_5$	1000	10	90	80%	0.005	2	
BiOI@Bi12O17Cl2	1000	10	300	100%	0.002	3	
PANI/TiO ₂	500	10	100	97%	0.012	4	
PNNs	150	10	80	100%	0.050	5	
TiO ₂ /In ₂ O ₃	1000	10	180	90%	0.003	6	
N-CQDs/BiOBr	200	10	50	100%	0.060	7	
CPNB/FCF	250	4.8	180	90%	0.006	8	
Ag ₂ O/BiOCOOH	300	6	60	100%	0.020	9	

Table S4. Comparison of the photocatalytic performance of the various reported

photocatalysts and PDEB-1 towards RhB under visible light

^a The ratio of the mass of the catalyst and the volume of the RhB solution.

^b The amount of RhB degraded per hour per unit mass of catalyst.

[1] B. Wang, Z. Xie, Y. Li, Z. Yang, L. Chen, Macromolecules 51 (2018) 3443-3449.

[2] G.T.S.T. da Silva, K.T.G. Carvalho, O.F. Lopes, C. Ribeiro, Appl. Catal. B 216(2017) 70-79.

[3] H. Huang, K. Xiao, Y. He, T. Zhang, F. Dong, X. Du, Y. Zhang, Appl. Catal. B 199 (2016) 75-86. [4] H. Zhang, R.L. Zong, J.C. Zhao, Y.F. Zhu, Environ. Sci. Technol. 42 (2008) 3803-3807.

- [5] L. Zhang, X.H. Huang, J.S. Hu, J. Song, I. Kim, Langmuir 33 (2017) 1867-1871.
- [6] C. Li, T. Ming, J. Wang, J. Wang, J.C. Yu, S.-h. Yu, J. Catal. 310 (2014) 84-90.
- [7] J. Di, J. Xia, M. Ji, B. Wang, X. Li, Q. Zhang, Z. Chen, H. Li, ACS Sustain. Chem.Eng. 4 (2016) 136-146.
- [8] X.X. Xu, H.Y. Yang, Z.Y. Li, X.X. Liu, X.L. Wang, Chem. Eur. J. 21 (2015) 38213830.
- [9] S. Li, K. Xu, S. Hu, W. Jiang, J. Zhang, J. Liu, L. Zhang, Appl. Surf. Sci. 397 (2017) 95-103.