Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2018

In vitro evolution of an L-amino acid deaminase active on L-1-naphthylalanine

Roberta Melis, Elena Rosini, Valentina Pirillo, Loredano Pollegioni, Gianluca Molla

Dipartimento di Biotecnologie e Scienze della Vita, Università degli Studi dell'Insubria, via J. H.

Dunant 3, 21100 Varese, Italy.

Supplementary Materials:

 Table S1 Analysis of the genetic diversity of the libraries of PmaLAAD variants generated

 by site-saturation mutagenesis.

Position	Original	Number of	Introduced	Encoded	Fraction
Einst a	couon conception ci	sequenceu ciones	mutation	residue	$\frac{1}{1} \frac{1}{1} \frac{1}$
r irst-g	eneration, si	ngie-site PillaLAAD	variants (tempi	ate gene: <i>Pma</i>	LAAD-00N)
			GGG	Gly	
			TTG	Leu	
1 279		6	GTT	Val	100
L277	IIA	0	GGT	Gly	100
			GGG	Gly	
			ATG	Met	
			GGG	Gly	
		6	ACT	Thr	
E219	TTC		CCT	Pro	100
Г310	IIC	0	TTG	Leu	100
			TTT	Phe	
			TGG	Trp	
			СТТ	Leu	
			GCG	Ala	
			GTT	Val	
V412	GTA	7	GTT	Val	86
			GTA*	Val	
			AGG	Arg	
			GGG	Gly	
			CCG	Pro	
			GCG	Ala	
V438	GTG	6	GAT	Asp	100
150		v	TCG	Ser	100
			GGG	Gly	
			CAT	His	

W439	TGG	7	TAT CTG CAG CTG TAT CGG	Tyr Leu Leu Leu Tyr Arg	100
First-ge	eneration dou	hle-site PmaL A	AU1 AD variants (temnl	ate gene: <i>Pmal</i>	AAD-00N
Thomas and the second	cher ation, dou		TAT/TGT	Tvr/Cvs	
			ATT/CAT	Ile/His	
			CTT/AAT	Leu/Asn	
			TTT/TGT	Phe/Cys	
		10	TTT/AGT	Phe/Ser	
S99/Q100	AGC/CAA	10	TAT/CGT	Tyr/Arg	100
			CAT/CAT	His/His	100
			TGT/CAT	Cys/His	
			CAT/AAT	His/Asn	
			GTT/CTT	Val/Leu	
			CAT/GTA*	His/Val	
				T. /01	
			IAI/GGI	l yr/Gly	
				l yr/lle	
				l yr/lle	
F210/04/12		10	IAI/IGI	Tyr/Cys	100
F318/V412	TIC/GIA	10	CGI/IGI	Arg/Cys	100
			AAI/IAI	Asn/1yr	
				Cys/lie	
				Phe/Asp	
	manation Drug		$\frac{AAI/AAI}{(4000000000000000000000000000000000000$	ASII/ASII	
Second-ge	eneration Pma	LAAD variants	CGG	12A/V430F-PM	ualaad-oon)
			ττ Λ *	Aig	
			AGG	Leu Lvs	
			GAT	Lys Asn	
			GTG	Val	
L279	TTA	10	CTT	Len	90
			ТСТ	Ser	
			CCG	Pro	
			AGT	Ser	
			CGT	Arg	
				_	
			CAG	Gln	
			ATT	lle	
			CGT	Arg	
			TGG	Trp	
			GIT	Val	
F318	TTC	12	IGG	1 rp	91.7
-			CAT	H1S	
				Phe	
			GAI	Asp	
				1 rp	
			UUG TTC*	PTO	
			110	FIIC	

Table S2 Expression and purification of wild-type PmaLAAD and variants. Proteins were purified from cells harvested from 1 L of culture. Activity values were determined on 50 mM L-Phe as substrate. (BD: below detection; ND: not determined).

Variant	Specific activity	Protein yield						
	(U/mg)	mg/g cells	mg/L culture					
Wild-type	2.90	1.0	9.9					
First-generation, single-site variants (template gene: <i>PmaLAAD-00N</i>)								
L279G	0.35	0.4	4.4					
F318A	1.36	0.7	4.0					
F318C ¹	0.90	0.5	3.5					
F318G ¹	0.97	0.7	5.0					
F318I ¹	1.34	1.7	8.9					
F318L	0.89	0.5	4.7					
F318M	1.04	0.7	5.8					
F318V	0.39	0.7	6.4					
V412A	2.85	0.6	5.9					
V412L	2.99	0.8	6.2					
V412A/V438P	0.63	0.8	6.1					
V438G	0.45	0.6	4.8					
V438P	1.14	1.1	6.4					
First-generation, doubl	e-site variants (templ	ate gene: <i>Pma</i>	LAAD-00N)					
F318C/V412L	0.82	0.4	3.5					
F318C/V412G	0.07	0.5	3.1					
F318G/V412G	BD	0.5	3.0					
F318I/V412S	0.48	0.7	7.8					
F318S/V412S	0.12	0.4	4.2					
F318V/V412L ²	ND	ND	ND					
F318V/V412G	0.32	1.1	6.9					
F318V/V412I	1.45	0.2	1.6					
F318V/V412S	0.79	0.1	1.0					
Second-generation variants (template gene: V412A/V438P PmaLAAD-00N)								
F318A/V412A/V438P	0.63	1.0	6.7					

¹These variants were identified in the second round of SSM.

² This variant was purified as apoprotein.

	L-Phe				L-1-Nal				Specificity constant	
	V _{max} (U/mg)	k _{cat} (s ⁻¹)	K _m (mM)	K _i (mM)	k _{cat} /K _m (s ⁻¹ mM ⁻¹)	V _{max} (U/mg)	k _{cat} (s ⁻¹)	K _m (mM)	k _{cat} /K _m (s ⁻¹ mM ⁻¹)	(k _{cat} /K _m) _{L-1-Nal} /(k _{cat} /K _m) _{L-Phe}
Wild-type	3.00 ± 0.04	2.66 ± 0.04	1.60 ± 0.09	-	1.66 ± 0.12	1.18 ± 0.24^{1}	1.05 ± 0.21	0.79 ± 0.02^{1}	1.30 ± 0.29	0.78 ± 0.25
			First-gene	ration, single-	-site variants (ter	nplate gene: Pma	LAAD-00N)			
L279G	0.67 ± 0.17	0.59 ± 0.15	40 ± 19	-	0.01 ± 0.01]	BD		-
F318A	1.53 ± 0.1	1.36 ± 0.09	3.76 ± 0.98	-	0.36 ± 0.12	1.15 ± 0.06	1.02 ± 0.05	0.24 ± 0.03	4.3 ± 0.8	11.9 ± 2.4
F318C ¹	1.04 ± 0.07	0.92 ± 0.06	5.7 ± 1.5	-	0.16 ± 0.05	0.65 ± 0.02	0.58 ± 0.02	0.35 ± 0.03	1.7 ± 0.2	10.6 ± 1.6
F318G ¹	1.32 ± 0.23	1.17 ± 0.20	1.87 ± 0.94	-	0.63 ± 0.42	0.98 ± 0.09	0.87 ± 0.08	0.21 ± 0.04	4.1 ± 1.2	6.5 ± 2.5
F318I3 ¹	1.44 ± 0.03	1.28 ± 0.03	1.8 ± 0.2	-	0.71 ± 0.09	1.10 ± 0.10	0.96 ± 0.09	0.31 ± 0.06	3.1 ± 0.9	4.4 ± 1.4
F318L	0.94 ± 0.02	0.83 ± 0.02	0.98 ± 0.10	-	0.85 ± 0.11	0.85 ± 0.06	0.75 ± 0.05	0.16 ± 0.03	4.7 ± 1.2	5.5 ± 1.52
F318M	1.09 ± 0.02	0.97 ± 0.02	1.05 ± 0.09	-	0.92 ± 0.1	1.10 ± 0.06	0.98 ± 0.05	0.41 ± 0.04	2.4 ± 0.4	2.6 ± 0.5
F318V	0.19 ± 0.01	0.17 ± 0.01	5.95 ± 1.02	-	0.03 ± 0.01	0.13 ± 0.02	0.12 ± 0.02	0.13 ± 0.05	0.9 ± 0.5	30 ± 17
V412A	3.04 ± 0.07	2.7 ± 0.06	2.75 ± 0.26	-	0.98 ± 0.11	1.33 ± 0.17^2	1.18 ± 0.15	0.61 ± 0.13^2	1.9 ±0.7	1.9 ± 0.7
V412A-V438P	1.59 ± 0.4	1.41 ± 0.35	7.4 ± 2.6	23.5 ± 7.7	0.19 ± 0.11	1.74 ± 0.29	1.55 ± 0.26	0.52 ± 0.10	3.1 ± 1.1	15.8 ± 6.2
V438G	1.53 ± 0.21	1.36 ± 0.19	3.94 ± 0.99	14.2 ± 3.5	0.35 ± 0.14	0.84 ± 0.08	0.75 ± 0.07	0.5 ± 0.09	1.5 ± 0.4	4.3 ± 1.6
V438P	2.34 ± 0.05	2.08 ± 0.04	1.64 ± 0.08	47.6 ± 2.8	1.27 ± 0.09	1.71 ± 0.23^{2}	1.52 ± 0.21	1.28 ± 0.25^2	1.2 ± 0.4	0.9 ± 0.4
First-generation, double-site variants (template gene: <i>PmaLAAD-00N</i>)										
F318V/V412G	1.02 ± 0.1	0.90 ± 0.09	7.2 ± 1.2	24.8 ± 3.8	0.12 ± 0.03	1.51 ± 0.02	1.34 ± 0.02	0.27 ± 0.01	5.0 ± 0.26	41.7 ± 2.4
F318I/V412S	0.56 ± 0.03	0.50 ± 0.03	1.77 ± 0.48	-	0.28 ± 0.09	0.76 ± 0.07	0.67 ± 0.06	0.08 ± 0.02	8.4 ± 2.9	30 ± 10.5
F318C/V412L	0.99 ± 0.02	0.88 ± 0.02	9.9 ± 0.7	-	0.09 ± 0.01	0.58 ± 0.06	0.51 ± 0.05	0.67 ± 0.12	0.8 ± 0.2	8.9 ± 2.6
F318C/V412G	0.17 ± 0.01	0.15 ± 0.01	0.77 ± 0.09	32.9 ± 3.7	0.19 ± 0.03	0.39 ± 0.02	0.35 ± 0.02	0.15 ± 0.02	2.3 ± 0.44	12.1 ± 2.5
F318V/V412S	0.97 ± 0.15	0.86 ± 0.13	13.4 ± 5.4	-	0.06 ± 0.03	1.54 ± 0.3^{2}	1.37 ± 0.28	0.58 ± 0.13^2	2.4 ± 1.04	40 ± 18

Table S3 Apparent kinetic parameters of selected PmaLAAD variants on L-Phe and L-1-Nal.

F318V/V412I	1.64 ± 0.07	1.45 ± 0.06	7.8 ± 1.1	-	0.19 ± 0.04		E	BD		
			Second-genera	ation varian	ts (template gene:	V412A/V438P-P	maLAAD-00N)			
F318A/V412A/V438P	0.71 ± 0.02	0.63 ± 0.02	6.0 ± 0.9	-	0.11±0.02	1.77 ± 0.05	1.57 ± 0.04	0.17 ± 0.01	9.2 ± 0.8	83.6 ± 7.3

¹These variants were identified in the first-generation, double-site, SSM.

² Values estimated using the Lineweaver-Burk plot.

Table S4. Primers used for site-saturation mutagenesis carrying the NNK or NDT

degenerated codon.

Position	Primers with NNK codon								
1.270	Forward: 5'-CCAACCTTGAATGTTTACNNKTCACAACAACGTGTATC-3'								
L279	Reverse: 5'-GATACACGTTGTTGTGAMNNGTAAACATTCAAGGTTGG-3'								
F318	Forward: 5'-CTTATGCTGTAGCCCCACGTATCNNKACAAGCTCCATTG-3'								
	Reverse: 5'-CAATGGAGCTTGTMNNGATACGTGGGGCTACAGCATAAG-3'								
V412	Forward: 5'-GAACGTTGGGGTGCAGTTNNKAGTCCAACATTTGATG-3'								
	Reverse: 5'-CATCAAATGTTGGACTMNNAACTGCACCCCAACGTTC 3'								
V438	Forward: 5'-CAATACAGCGACANNKTGGGGGAATGACAGAAGGTCC-3'								
	Reverse: 5'-GGACCTTCTGTCATTCCCCAMNNTGTCGCTGTATTG-3'								
W/20	Forward: 5'-CAATACAGCGACAGTGNNKGGAATGACAGAAGGTCC-3'								
W439	Reverse: 5'-GGACCTTCTGTCATTCCMNNCACTGTCGCTGTATTG-3'								
Position	Primers with NDT codon								
E210	Forward: 5'-CTTATGCTGTAGCCCCACGTATCNDTACAAGCTCCATTG-3'								
F318	Reverse: 5 -CAATGGAGCTTGTAHNGATACGTGGGGGCTACAGCATAAG-3'								
V412	Forward: 5'-GAACGTTGGGGTGCAGTTNDTAGTCCAACATTTGATG-3'								
	Revese : 5'-CATCAAATGTTGGACTAHNAACTGCACCCCAACGTTC-3'								
\$00/0100	Forward: 5'-GAGCAATCAGGCCGCGCATACNDTNDTATCATTAGCTACCAAACGTC-3'								
599/Q100	Reverse: 5'-GACGTTTGGTAGCTAATGATAHNAHNGTATGCGCGGGCCTGATTGCTC-3'								

Figure S1 SDS-PAGE analysis of selected purified PmaLAAD variants. Lane 1: crude extract (80 μg); lane 2: LMW markers (Prestained Protein Ladder, PageRulerTM); lane 3: wild-type PmaLAAD; lane 4: V412A/V438P variant; lane 5: F318A/V412A/V438P variant. For each lane 5 μg of total proteins were loaded.

Figure S2

Figure S2 Substrate scope (reported as specific activity) of wild-type (black), F318A (cyan), V412A/V438P (blue), and F318A/V412A/V438P (purple) PmaLAAD variants. The enzymatic activity was measured using the polarographic assay. The enzymatic activity was determined on different natural and synthetic L-amino acids: 50 mM L-Phe, 50 mM L-His, 50 mM L-Met, 1.2 mM D,L-1-naphthylalanine (D,L-1-Nal), 1.2 mM D,L-2-naphthylalanine (D,L-2-Nal), 0.7 mM D,L-1-naphthylglycine (D,L-1-NGly), 0.7 mM D,L-2-naphthylglycine (D,L-2-NGly), 5 mM D,L-homophenylalanine (D,L-h-Phe), and 10 mM L-4-nitrophenylalanine (L-4-Npa) under standard conditions (50 mM potassium phosphate, pH 7.5, 25 °C and at air saturation).

Figure S3

Figure S3 Time course of enzymatic activity of wild-type PmaLAAD and selected variants at 25 °C in presence of *E. coli* membranes added before starting the experiment. Wild-type PmaLAAD, k_{fast} = 9.09 ± 1.65 min⁻¹, k_{slow} = 0.018 ± 0.004 (black); F318A, k_{fast} = 17.3 ± 9.8, k_{slow} =0.06±0.05 min⁻¹ (cyan); V412A/V438P, k_{fast} = 7.0 ± 0.7 min⁻¹, k_{slow} =0.14 ± 0.01 min⁻¹ (blue); V412A/V438P/F318A, k_{fast} = 25.1 ± 16.3 min⁻¹, k_{slow} =0.04 ± 0.02 min⁻¹ (purple). We defined k_{fast} as the rate of PmaLAAD reactivation following membrane addition and k_{slow} as the rate of PmaLAAD inactivation during the subsequent incubation at 25 °C.

Figure S4. HPLC chromatograms after 10 min of bioconversion of D,L-1-Nal (retention time = 4.7 min) to 1-naphthylpyruvate (retention time = 8.1 min) catalyzed by wild-type PmaLAAD (dashed line) or the F318A (cyan), V412A/V438P (blue), and F318A/V412A/V438P (purple). Conditions: 1.2 mM substrate, 0.05 mg/mL PmaLAAD-00N or different PmaLAAD variants, *E. coli* membranes, pH 7.5, 25 °C (1.0 mL).

Optimization of F318A/V412A/V438P PmaLAAD expression

Optimization of expression conditions

Starter cultures were prepared by growing a single colony of *E. coli* BL21(DE3) cells carrying the recombinant pET11a-PmaLAAD-00N or pET11a-PmaLAAD-F318A/V412A/V438P plasmid overnight at 37 °C in flasks containing TB broth to which 100 μ g/mL ampicillin was added. These cultures were diluted with the same media to a starting OD_{600nm} of 0.1 and then incubated at 37 °C on a rotatory shaker at 200 rpm. Experiments were carried out in 500 mL baffled Erlenmeyer flasks containing 125 mL of liquid media at 37 °C and 200 rpm. Both the optical density and the pH value of the medium were assayed every hour. Growth curves were generated by the interpolation of OD_{600nm} values according to the Gompertz equation (Zwietering et al., 1990).

In order to optimize F318A/V412A/V438P PmaLAAD production in *E. coli* BL21(DE3) cells, the effect of adding 0.1 mM IPTG at different phases of the growth curve (corresponding to OD₆₀₀ of 0.5, 2, 5), of the temperature of growth (28 or 15 °C), and of the time of cell harvest (4 h or overnight after IPTG addition) on protein expression was investigated. The LAAD enzymatic activity of crude extracts (50 μ L) was determined by using the polarographic assay (see below) on 1.2 mM D,L-1-Nal. Since the F318A/V412A/V438P PmaLAAD showed the most interesting enzymatic properties, the expression conditions of this recombinant enzyme in BL21(DE3) *E. coli* cells were optimized using a *semi*-factorial design approach. The growth curve of the variant was almost superimposable to the one of the PmaLAAD-00N wild-type with almost identical Gompertz equation parameters (Figure S5a). The temperature, induction growth phase, and the interval between IPTG addition and cell harvesting were evaluated. The best expression condition was: adding 0.1 mM IPTG at OD_{600nm} = 2.0 (corresponding to a mid-exponential growth phase) and collecting cells after overnight growth at 28 °C (condition 4). Under these conditions, a 4.5-fold higher volumetric yield (235 U/L) was reached than the one obtained under standard conditions (i.e., induction at OD_{600nm} = 0.5 and collecting cells

after 4 hours at 28 °C). This result is due to a 2-fold increase in enzyme activity value per gram of cells and of the biomass accumulation (Table S5 and Figure S5b).

M.H. Zwietering, I. Jongenburger, F.M. Rombouts, a nd K. Van't Riet, *App. Env. Microbiol.*, 1990, 56, 1875-1881.

Table S5

Conditions tested for the recombinant expression of F318A/V412A/V438P PmaLAAD variant.

Conditions	g of cells
1; $OD_{600 \text{ nm}} = 0.5$, 28 °C, harvest time = 4 h	1.15
2; $OD_{600 \text{ nm}} = 0.5$, 28 °C, harvest time = overnight	2.52
3; $OD_{600 \text{ nm}} = 2, 28 \text{ °C}$, harvest time = 4 h	2.04
4; $OD_{600 \text{ nm}} = 2, 28 \text{ °C}$, harvest time = overnight	2.18
5; $OD_{600 \text{ nm}}$ = 5, 28 °C, harvest time = 4 h	2.26
6; $OD_{600 \text{ nm}} = 5, 28 \text{ °C}$, harvest time = overnight	2.73
7; $OD_{600 \text{ nm}} = 0.5$, 15°C, harvest time = 4 h	0.41
8; $OD_{600 \text{ nm}} = 0.5$, 15 °C, harvest time = overnight	2.06
9; $OD_{600 \text{ nm}} = 2$, 15 °C, harvest time = 4 h	1.09
10; $OD_{600 \text{ nm}} = 2, 28 \text{ °C}$, harvest time = overnight	2.32
11; $OD_{600 \text{ nm}} = 5$, 15 °C, harvest time = 4 h	1.99
12; $OD_{600 \text{ nm}} = 5$, 15 °C, harvest time = overnight	2.66

Experiments were carried out in 500 mL baffled Erlenmeyer flasks containing 125 mL of TB broth.

Figure S5

Figure S5: (a) Growth curve of BL21(DE3) *E. coli* cells carrying the pET11b-PmaLAAD-00N (\mathfrak{s}) or the pET11b-PmaLAAD-F318A/V412A/V438P (\mathfrak{c}) plasmid in Terrific broth. pH of the growing medium (PmaLAAD-00N, **O**; F318A/V412A/V438P variant, **O**). (b) Expression yields of F318A/V412A/V438P PmaLAAD under different conditions (conditions reported in Table S5). The activity values were determined under standard conditions on 1.2 mM D,L-1-Nal as a substrate (i.e. in the presence of *E. coli* membranes at pH 7.5, 25 °C).