Supporting Information for:

Engineering surface defects and metal-support interactions on

Pt/TiO₂(B) nanobelts to boost catalytic oxidation of CO

Jinghua Liu^{a,1}, Tong Ding^{a,1}, Hao Zhang^a, Guangcheng Li^a, Jinmeng Cai^a, Dongyue

Zhao^a, Ye Tian^{a,*}, Hui Xian^b, Xueqin Bai^{a,c}, Xingang Li^{a,*}

^a Collaborative Innovation Center of Chemical Science and Engineering (Tianjin),

Tianjin Key Laboratory of Applied Catalysis Science & Technology, School of

Chemical Engineering & Technology, Tianjin University, Tianjin 300072, People's Republic of China

^b School of Continuing Education, Tianjin Polytechnic University, Tianjin 300387, People's Republic of China

^c Present address: Yussen Chemical Co., Ltd, Huizhou 516086, People's Republic of China

¹ These authors contributed equally to this work.

* Corresponding author:

Dr. Ye Tian EMAIL: tianye@tju.edu.cn

Prof. Xingang Li EMAIL: xingang_li@tju.edu.cn

1. Figures

Figure S1

Figure S1. TEM image of the TiO₂(B) powder

Figure S2

Figure S2. Arrhenius plots of the catalysts upon the catalytic oxidation of CO.

Reaction conditions: $W_{Cat} = 40$ mg, feeding gas compositions = 0.9 % CO, 24 % O₂, N₂ balance; flow rate = 150 mL min⁻¹. The activation energy is calculated in the conversion range of 0.4-8.8 %. The E_a is obtained through liner fitting the experimental data with 95 % confidence.

Figure S3

Figure S3. CO conversion of the catalysts via the reaction temperature: (a) H-600, (b) Pt/P25-600 and (c) Pt/P25.

Reaction conditions: $W_{Cat} = 40$ mg; feeding gas compositions = 0.9 % CO, 24 % O₂

Figure S4

Figure S4. H₂-TPR profiles of the precursors.

Figure S5

Figure S5. CO_2 concentrations as a function of time during isothermal CO oxidation at 110 °C.

2. Tables

Catalysts	r_w 10 ⁻⁵ mol g _{Pt} ⁻¹ s ⁻¹	Ref.
H-400	9.7 (100 °C)	This work
H-500	11.2 (100 °C)	This work
H-600	18.7 (100 °C) 5.0 (80 °C)	This work
H-700	3.1 (100 °C)	This work
Pt/CeO ₂	14.9 (225 °C)	1
5.0 Pt/TiO ₂	5.5 (100 °C)	2
2.0 Pt/SiO ₂	0.7 (200 °C)	2
2wt%Pt-Rutile-H	2.1 (80 °C)	3
2wt%Pt-TiO ₂ -101	4.6 (80 °C)	4

Table S1. Rates of the catalysts for catalytic oxidation of CO.

Catalysts –		Peark areas	
	α	β	γ
H-400	21	72	25
H-500	30	105	54
H-600	96	135	44
H-700	50	-	49

Table S2. The summary of CO-TPO peak deconvolution of the catalysts.

3. References

- M. Shen, L. Lv, J. Wang, J. Zhu, Y. Huang, J. Wang, Study of Pt dispersion on Ce based supports and the influence on the CO oxidation reaction, Chem. Eng. J. 255 (2014) 40-48.
- 2 N. Li, Q. Chen, L. Luo, W. Huang, M. Luo, G. Hu, J. Lu, Kinetic study and the effect of particle size on low temperature CO oxidation over Pt/TiO₂ catalysts, Appl. Catal. B 142 (2013) 523-532.
- 3 Z. Jiang, Y. Yang, W. Shangguan, Z. Jiang, Influence of support and metal precursor on the state and CO catalytic oxidation activity of platinum supported on TiO₂, J. Phys. Chem. C 116 (2012) 19396-19404.
- 4 Y. Zhou, D.E. Doronkin, M. Chen, S. Wei, J.D. Grunwaldt, Interplay of Pt and crystal facets of TiO₂: CO oxidation activity and operando XAS/DRIFTS studies, ACS Catal. 6 (2016) 7799-7809.