Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2018

ESI for

Fabrication of Se/C by using carbohydrate as the biomass starting materials: an efficient catalyst for the regio-specific epoxidation of β -ionone with ultrahigh turnover numbers

Yufan Yang,^{†a} Xin Fan,^{†a} Hongen Cao,^{†ab} Sainan Chu,^a Xu Zhang,^{*a} Qing Xu^a and Lei Yu^{*ab}

^a Guangling College and Institute of Pesticide of School of Chemistry and Chemical Engineering and School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu 225002, China. Fax: +86 514 87975244; Tel: +86 136 65295901; Emails: <u>zhangxu@yzu.edu.cn</u> (X. Zhang); <u>yulei@yzu.edu.cn</u> (L. Yu).

^b Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, 225009, China

† These authors contributed equally.

CONTENTS

Detaled data tables	S2
NMR spectra of the epoxide 3	S4
Decomposition of the epoxide 3	

Detailed data tables

Entry	Catalyst amount (mg)	Conv. ^b	Sel. ^c	Yield ^d
1	1	68%	53%	36%
2	5	76%	51%	39%
3	10	94%	50%	47%
4	20	98%	42%	41%
5	30	100%	40%	40%

Table S1 Effect of the catalyst amount (for Fig. 1 in text).^a

^{*a*} 1 mmol of **1**, 4 mmol of H₂O₂ and 1 mL of MeCN were heated in a sealed tube; ^{*b*} Unreacted substrate **1** was collected and weight to calculate its conversion ratio. ^{*c*} Selectivity of **3** was calculated on the basis of the its isolated amount. ^{*d*} Isolated yield of **3** based on **1**.

Entry	Solvent	Conv. ^b	Sel. ^c	Yield ^d
1	MeCN	94%	50%	47%
2	EtOH	100%	30%	30%
3	cyclohexanone	100%	47%	47%
4	acetone	70%	40%	28%
5	THF	100%	39%	39%
6	1,4-dioxane	100%	40%	40%
7	EtOAc	100%	62%	62%

Table S2 Effect of the reaction solvent (for Fig. 2 in text).^a

^{*a*} 1 mmol of **1**, 4 mmol of H_2O_2 , 10 mg of Se/C **6d** and 1 mL of solvent were heated in a sealed tube; ^{*b*} Unreacted substrate **1** was collected and weight to calculate its conversion ratio. ^{*c*} Selectivity of **3** was calculated on the basis of the its isolated

amount. ^d Isolated yield of **3** based on **1**.

Entry	Condition	Conv. ^b	Sel. ^c	Yield ^d
1	H ₂ O ₂ (4 quiv.)	100%	62%	62%
2	H_2O_2 (4 quiv.) catalyst recycle & reused	80%	61%	49%
3	H ₂ O ₂ (2 quiv.)	79%	63%	50%
4	H_2O_2 (2 quiv.) catalyst recycle & reused	80%	59%	47%
5	O ₂	50%	52%	26%
6	O ₂ catalyst recycle & reused	50%	48%	24%

Table S3 Catalyst recycle & reuse (for Fig. 3 in text).^a

^{*a*} 1 mmol of **1**, 10 mg of Se/C **6d** and 1 mL of EtOAc were heated in a sealed tube; ^{*b*} Unreacted substrate **1** was collected and weight to calculate its conversion ratio. ^{*c*} Selectivity of **3** was calculated on the basis of the its isolated amount. ^{*d*} Isolated yield of **3** based on **1**.

Table S4 Selective epoxidation reaction of β -ionone catalyzed by the S/C fabricated from different carbohydrates (for Fig. 4 in text).^{*a*}

Entry	Carbohydrate	Conv. ^b	Sel. ^c	Yield ^d
1	glocuse	100%	62%	62%
2	fructose	100%	60%	60%
3	sucrose	68%	47%	32%
4	chitosan	79%	48%	38%
5	potato amylum	72%	32%	23%
6	willow sawdust	69%	35%	24%

^{*a*} The Se/C catalysts were fabricated under the conditions described in Table 1, entry 4 in text; For catalytic activity evaluation reactions, 1 mmol of 1, 4 mmol of H_2O_2 , 10 mg of Se/C and 1 mL of EtOAc were heated in a sealed tube; ^{*b*} Unreacted substrate 1 was collected and weight to calculate its conversion ratio. ^{*c*} Selectivity of 3 was calculated on the basis of the its isolated amount. ^{*d*} Isolated yield of 3 based on 1.

NMR spectra of the epoxide 3

 1 H NMR of **3**, CDCl₃, 400 MHz

Decomposition of the epoxide 3 (experimental details)

52.1 mg of pure epoxide **3** (0.25 mmol), 2.5 mg of Se/C **6d**, 1 mmol of H_2O_2 (30 w/w%), a piece of magnetic bar and 0.25 mL of EtOAc were added into a reaction tube. The tube was sealed and stirred at 80 °C for 4 h. The mixture was cooled to room temperature. Thin layer chromatography indicated that a series of decomposition products were generated (Fig. S1). 78% of **3** was re-obtained after preparative thin layer chromatography separation.

Fig. S1 TLC photograph of the decomposition reaction of epoxide 3