How do the Unique Au/ α -Fe₂O₃ Interfacial Structures Determine Activity in CO Oxidation

Lingli Gu, ¹ Qin Su, ¹ Wu Jiang, ¹ Yao Yao, ¹ Yijun Pang, ¹ Weijie Ji, * ¹ Chak-Tong Au ²

¹ Key Laboratory of Mesoscopic Chemistry, MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China

² Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong

Fig. S1 CO conversion (a) and CO conversion rates (b) on α -Fe₂O₃-THB, α -Fe₂O₃-QC, α -Fe₂O₃-HS with a GHSV = 30,000 mL g_{cat}⁻¹ h⁻¹

Fig. S2 Durability test of Au/ α -Fe₂O₃-THB at CO conversion of (a) ca. 70% and (b) 90% (GHSV = 120,000 mL g_{cat}⁻¹ h⁻¹).

Fig. S3 Durability test of Au/ α -Fe₂O₃-HS at CO conversion of (a) ca. 70% and (b) 90% (GHSV = 120,000 mL g_{cat}⁻¹ h⁻¹).

Fig. S4 Temperature-dependence of CO conversion in the -40 \sim 30°C range over Au/ α -Fe₂O₃-THB and Au/ α -Fe₂O₃-HS (GHSV = 120,000 mL g_{cat}⁻¹ h⁻¹).

Fig. S5 CO₂ signals during CO-TPSR for the α -Fe₂O₃ substrates (α -Fe₂O₃-THB, α -Fe₂O₃-QC, and α -Fe₂O₃-HS) and the Au-loaded samples (Au/ α -Fe₂O₃, Au/ α -Fe₂O₃-QC, and Au/ α -Fe₂O₃-HS).

Fig. S6 Au4f XPS profiles of the Au-loaded samples (Au/ α -Fe₂O₃, Au/ α -Fe₂O₃-QC, and Au/ α -Fe₂O₃-HS).

Fig. S7 FTIR spectra collected on the Au-loaded samples (Au/ α -Fe₂O₃-THB, Au/ α -Fe₂O₃-QC, and Au/ α -Fe₂O₃-HS) at RT. Type I (\blacklozenge): formate; type II (\blacklozenge): non-coordinated carbonate; type III (\blacklozenge): bi-dentate carbonate; type IV (\blacklozenge): mono-dentate carbonate.

Fig. S8 FTIR spectra collected (a) on α -Fe₂O₃-THB, α -Fe₂O₃-QC, and α -Fe₂O₃-HS at 200 °C, (b) on Au/ α -Fe₂O₃-THB, Au/ α -Fe₂O₃-QC, and Au/ α -Fe₂O₃-HS at RT, and (c) on Au/ α -Fe₂O₃-THB, Au/ α -Fe₂O₃-QC, and Au/ α -Fe₂O₃-HS at 60 °C.