Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2018

Novel Dirhodium Coordination Polymers: The Impact of Side Chains on Cyclopropanation

Jiquan Liu,^[a,b] Yeping Xu,^[b] Pedro B. Groszewicz,^[b] Martin Brodrecht,^[b] Claudia Fasel,^[c] Kathrin Hofmann,^[b] Xijuan Tan,^[d] Torsten Gutmann^{[b]*} and Gerd Buntkowsky^{[b]*}

 ^a Key Laboratory of Synthetic and Natural Functional Molecule Chemistry, College of Chemistry and Materials Science, Northwest University, 710127 Xi'an, P. R. China
 ^b Eduard-Zintl-Institute for Inorganic Chemistry and Physical Chemistry, Technical University Darmstadt, Alarich-Weiss-Straße 8, 64287 Darmstadt, Germany
 ^c FB Material- und Geowissenschaften, Technical University Darmstadt, Alarich-Weiss-Straße 2, 64287 Darmstadt, Germany
 ^d Laboratory of Mineralization and Dynamics, College of Earth Sciences and Land Resources, Chang'an University, 710054 Xi'an, P. R. China

E-mail: <u>gutmann@chemie.tu-darmstadt.de</u> <u>Gerd.Buntkowsky@chemie.tu-darmstadt.de</u>

Content

1.	ATR-FTIR of synthesized ditopic ligands	2
2.	Solution-state NMR of synthesized ditopic ligands	3
3.	TG-DTA analyses	5
4.	SEM and XRD	8
5.	UV-vis spectroscopy	10
6.	XPS	12
7.	Leaching test	13
8.	Calculation of turnover frequency (TOF)	15
9.	References	16

1. ATR-FTIR of synthesized ditopic ligands

Figure S1. ATR-FTIR of H₂L1(a), H₂L2(b), H₂L3(c), H₂L4(d), H₂L5(e), H₂L6(f) and H₂L7(g).

2. Solution-state NMR of synthesized ditopic ligands

Figure S2. ¹H solution-state NMR of $H_2L1(a)$, $H_2L2(b)$, $H_2L3(c)$, $H_2L4(d)$, $H_2L5(e)$, $H_2L6(f)$ and $H_2L7(g)$.

Figure S3. ¹³C solution-state NMR of $H_2L1(a)$, $H_2L2(b)$, $H_2L3(c)$, $H_2L4(d)$, $H_2L5(e)$, $H_2L6(f)$ and $H_2L7(g)$. Note: H_2L1 was dissolved in DMF with 1–2 drops of D₂O, while H_2Ln (n = 2–7) were dissolved in DMSO-d₆.

Experimental Details:

¹H and ¹³C solution-state NMR spectra were recorded on a 7 T Bruker Avance II 300 spectrometer corresponding to frequencies of 299.91 MHz for ¹H and 75.41 MHz for ¹³C. Typically, ¹H spectra were recorded with single pulse excitation employing a 30° excitation pulse of ca. 4.4 μ s, a relaxation delay of 1 s and 32-64 scans. ¹³C spectra were recorded with single pulse excitation employing a 30° excitation pulse of ca. 3.1 μ s, a relaxation delay of 0.5 s and 600-1500 scans. Protons were decoupled during data acquisition employing the waltz16 ^[1] sequence.

3. TG-DTA analyses

Figure S4. TG curve (I) and DTA curve (II) of Rh₂-L1 under O₂ atmosphere.

Figure S5. TG curve (I) and DTA curve (II) of Rh₂-L2 under O₂ atmosphere.

Figure S6. TG curve (I) and DTA curve (II) of Rh₂-L3 under O₂ atmosphere.

Figure S7. TG curve (I) and DTA curve (II) of Rh₂-L4 under O₂ atmosphere.

Figure S8. TG curve (I) and DTA curve (II) of Rh₂-L5 under O₂ atmosphere.

Figure S9. TG curve (I) and DTA curve (II) of Rh₂-L6 under O₂ atmosphere.

Figure S10. TG curve (I) and DTA curve (II) of Rh₂-L7 under O₂ atmosphere.

4. SEM and XRD

Figure S11. SEM of Rh₂-L1(a), Rh₂-L2(b), Rh₂-L3(c), Rh₂-L4(d), Rh₂-L5(e), Rh₂-L6(f) and Rh₂-L7(g).

Figure S12. XRD patterns of Rh₂-L1(a), Rh₂-L2(b), Rh₂-L3(c), Rh₂-L4(d), Rh₂-L5(e), Rh₂-L6(f) and Rh₂-L7(g).

5. UV-vis spectroscopy

Figure S13. UV-vis spectrum of $Rh_2(TFA)_4$ CH_2Cl_2 solution by adding ethyl ether (EtOEt) probe molecule with $Rh_2(TFA)_4$ /EtOEt molar ratio of 1/0 (a), 1/1 (b), 1/2 (c), 1/6 (d), 1/10 (e),1/1800 (f) and 1/3600 (g).

Figure S14. UV-vis spectrum of $Rh_2(TFA)_4$ CH_2Cl_2 solution by adding ethanol (EtOH) probe molecule with $Rh_2(TFA)_4$ /EtOH molar ratio of 1/0 (a), 1/1 (b), 1/2 (c), 1/6 (d), 1/10 (e), 1/1800 (f) and 1/3600 (g).

Figure S15. UV-vis spectrum of $Rh_2(TFA)_4$ CH₂Cl₂ solution by adding acetone probe molecule with $Rh_2(TFA)_4$ /acetone molar ratio of 1/0 (a), 1/1 (b), 1/2 (c), 1/6 (d), 1/10 (e), 1/1800 (f) and 1/3600 (g).

Figure S16. UV-vis spectrum of $Rh_2(TFA)_4$ CH_2Cl_2 solution by adding ethyl acetate (EtOAc) probe molecule with $Rh_2(TFA)_4$ /EtOAc molar ratio of 1/0 (a), 1/1 (b), 1/2 (c), 1/6 (d), 1/10 (e), 1/1800 (f) and 1/3600 (g). Note: These spectra were reproduced from our previous work (see ref ^[2]).

Experiment details:

The solution was prepared by dissolving $0.0155 \text{ g} (23.5 \mu \text{mol})$ of $\text{Rh}_2(\text{TFA})_4$ into 25 mL CH₂Cl₂ resulting in a concentration of 0.94 mmol·L⁻¹. All liquid samples were recorded on a TIDAS 100 MCS spectrometer (J&M Analytik AG). For each measurement, 0.6 mL solution was added into ca. 1 mL quartz cuvette (10.00 mm QS Hellma Analytics).

6. XPS

The compositions of obtained dirhodium coordination polymers can be reflected via wide scan X-ray photoelectron spectra (ESI Figure S17). The electron binding energies obtained at 531 eV (O1*s*), 522 eV (Rh3 $p_{1/2}$), 497 eV (Rh3 $p_{3/2}$), 312-308 eV (Rh3 $d_{3/2}$ and Rh3 $d_{5/2}$) and 284 eV (C1*s*) reflect the main composition of dirhodium coordination polymers.^[3] The appearance of an electron binding energy at 688 eV, assigns to F1*s* which underlines the occurrence of trifluoroacetate residues in the obtained dirhodium coordination polymers.^[3a] This observation further supports the incomplete ligand exchange as suggested by the ¹³C CP MAS NMR (Figure 2 in main text) and ¹⁹F MAS NMR spectra (Figure 3 in main text).

Figure S17. XPS of dirhodium coordination polymers in wide scan mode, Rh₂-L1(a), Rh₂-L2(b), Rh₂-L3(c), Rh₂-L4(d), Rh₂-L5(e), Rh₂-L6(f) and Rh₂-L7(g).

Figure S18. XPS of $Rh_2(TFA)_4$ in (I) wide scan mode and (II) high resolution mode. Note: The figure was reproduced from our previous work (see electronic supporting information of ref.^[2])

7. Leaching test

To prove the heterogeneous nature of the dirhodium coordination polymers, Rh₂-L2 was chosen for a case study (ESI Figure S19). The catalyst Rh₂-L2 was filtrated at 15 min and the product yields in the filtered solution stayed around 35% along the reaction time until 120 min, even for extended reaction time (240 min). Furthermore, the filtrated reaction medium was collected for ICP-MS measurement to determine the rhodium contain. As can be seen in Table S1, the rhodium fraction was found to be ca. 160 ppb. Similar to our previous work,^[2] both chemical confinement and separation of binding sites from the catalytic sites (Figure S19b) seem to be responsible for the negligible release of active sites during the cyclopropanation.

Figure S19 (I) Leaching test: reaction in the presence of Rh₂-L2 (b) and after removal of Rh₂-L2 (b'), and (II) schematic representation of binding site and catalytic site in dirhodium coordination polymers.

			8								
Client Name		Liu Jiquan	Report No.	ICPMS-JC-20180708							
Number of Samp	ples	2	Testing date	2018/7/8							
Unit		ppb	ppb Instrument ThermoFisher Scientificr X series ICP-MS								
Analytical Cente	er	The Laboratory of Mineralization and Dynamics, Chang'an University									
Territor	Analytical N	lytical No. Sample No.									
Testing element	JQQ-b-1	LJQ-b-2									
	Rh ₂ -L2	Rh ₂ -L2									
Rh	160.5	161.8									

Testing Report

Table S1 The rhodium fraction in the reaction medium as determined by ICP-MS.

Experiment details

The Rhodium content was determined by a Thermofisher Scientific X series ICP-MS instrument (Waltham, MA, USA) in the Laboratory of Mineralization and Dynamics, Chang'an University. After removal of the Rh₂-L2 catalyst via centrifugation, the clear solution was collected and the solvent was removed at elevated temperature (50-100 °C). The residue was further treated at 500 °C under air for 6 h. After burning the organic species, the sample was shifted into a Teflon vessel, and 1.0 mL of concentrated HNO₃ (68% v/v, AR grade) was added. After continually heating at 130 °C for 2 h, the solution was evaporated until incipient dryness. Thereafter, the samples were diluted using 2% HNO₃ (v/v) to 13.0 mL calibrated mark. With the solutions filtrated through the filter paper (0.22 μ m), the Rh levels were directly quantified by ICP-MS.

8. Calculation of turnover frequency (TOF)

The TOFs were calculated from the yield according to ref.^[4] employing the following equation:

 $TOF = n_{(EDA)} * yield / n_{(catalyst, exp)} / t$,

where t is the reaction time, $n_{(EDA)}$ is the amount of EDA (0.5 mmol) and $n_{(catalyst, exp)}$ is the amount of dirhodium units calculated from the nominal concentration of the weighted samples, $n_{(catalyst, nom)}$, which is ca. 9.3 µmol for all coordination polymers, multiplied by the ratio of the nominal concentration (Rh%(nominal)) calculated for perfect stoichiometric exchange to the experimental Rh₂ concentration from TGA (Rh%(TGA)):

 $n_{(catalyst, exp)} = n_{(catalyst, nom)} * (Rh\%(nominal) / Rh\%(TGA)).$

t (min)	Rh ₂ -L1		Rh ₂ -L2		Rh ₂ -L3		Rh ₂ -L4		Rh ₂ -L5		Rh ₂ -L6		Rh ₂ -L7	
	yield	TOF												
	(%)	(h ⁻¹)												
1	0.9	35.5	5.4	176.9	2.4	82.7	0.0	0.0	3.1	109.1	4.9	136.0	0.0	0.0
2.5	1.3	20.8	8.4	110.1	4.0	54.1	0.0	0.0	3.4	48.0	7.5	84.1	0.5	5.4
5	1.9	15.5	12.1	79.5	7.6	51.4	0.0	0.0	4.1	28.8	10.3	57.8	0.5	2.7
7.5	2.2	12.0	14.8	65.0	11.9	53.8	0.0	0.0	4.5	21.2	13.1	49.0	0.6	2.3
10	2.6	10.7	20.4	67.0	16.6	56.3	0.0	0.0	5.4	19.0	14.9	41.8	0.5	1.6
15	3.6	9.6	32.8	72.0	22.3	50.3	0.0	0.0	6.2	14.6	16.9	31.6	0.8	1.7
20	3.7	7.5	49.6	81.8	28.9	49.0	0.0	0.0	7.3	12.8	18.7	26.2	1.0	1.5
25	3.9	6.3	54.7	72.1	35.9	48.6	1.2	1.6	7.9	11.1	21.4	23.9	0.9	1.1
30	4.2	5.6	62.4	68.5	41.0	46.4	1.3	1.4	9.4	11.0	21.7	20.3	1.3	1.3
60	7.3	4.9	89.3	49.0	61.4	34.7	2.3	1.3	20.7	12.2	27.7	12.9	2.9	1.5
120	10.5	3.5	91.1	25.0	75.7	21.4	10.1	2.8	26.8	7.9	35.2	8.2	7.9	2.0

Table S1. Calculation of the TOF for each catalyst at each time point.

9. References

- aA. J. Shaka, J. Keeler, R. Freeman, *Journal of Magnetic Resonance* 1983, *53*, 313-340; bA. J.
 Shaka, J. Keeler, T. Frenkiel, R. Freeman, *Journal of Magnetic Resonance* 1983, *52*, 335-338.
- [2] J. Liu, C. Fasel, P. Braga-Groszewicz, N. Rothermel, A. S. Lilly Thankamony, G. Sauer, Y. Xu, T. Gutmann, G. Buntkowsky, *Catalysis Science & Technology* **2016**, *6*, 7830-7840.
- [3] aH. J. Mathieu, Auger Electron Spectroscopy, John Wiley & Sons, Ltd, 2009; bA. D. Hamer, D. G. Tisley, R. A. Walton, Journal of the Chemical Society, Dalton Transactions 1973, 116-120; cA. M. Dennis, R. A. Howard, K. M. Kadish, J. L. Bear, J. Brace, N. Winograd, Inorganica Chimica Acta 1980, 44, L139-L141; dP. R. Bontcev, M. Miteva, E. Zhecheva, D. Mechandjiev, G. Pneumatikakis, C. Angelopoulos, Inorganica Chimica Acta 1988, 152, 107-110; eN. F. Gol'dshleger, B. I. Azbel, Y. I. Isakov, E. S. Shpiro, K. M. Minachev, Journal of Molecular Catalysis A: Chemical 1996, 106, 159-168.
- [4] J. Liu, P. B. Groszewicz, Q. Wen, A. S. L. Thankamony, B. Zhang, U. Kunz, G. Sauer, Y. Xu, T. Gutmann, G. Buntkowsky, *The Journal of Physical Chemistry C* **2017**, *121*, 17409-17416.