Supporting Information

Pd-Zn Nanocrystals for High-Efficient Formic Acid Oxidation

Xinran Zhang,^a Hongsheng Fan,^a Jinlong Zheng,^b Sibin Duan,^b Yunxia Huang,^a Yimin Cui^{*a} and Rongming Wang^{*b}

^a Department of Physics, Beihang University, Beijing 100191, P. R. China

^b Beijing Advanced Innovation Center of Materials Genome Engineering, and Beijing Key Laboratory

for Magneto-Photoelectrical Composite and Interface Science, School of Mathematics and Physics,

University of Science and Technology Beijing, Beijing 100083, R. P. China.

*Corresponding author. E-mail: rmwang@ustb.edu.cn, E-mail: cuiym@buaa.edu.cn

Fig. S1 SEM images and EDS spectral of the series of Pd_xZn_{1-x} NCs, (a) and (b) $Pd_{0.90}Zn_{0.10}$, (c) and (d) $Pd_{0.84}Zn_{0.16}$, (e) and (f) $Pd_{0.77}Zn_{0.23}$.

samples	Pd _{0.90} Zn _{0.10}	Pd _{0.84} Zn _{0.16}	Pd _{0.77} Zn _{0.23}
ICP-MS	89.7/10.3	83.7/16.3	76.8/23.2
EDS	90.1/9.9	82.81/17.9	77.5/22.5

Table S1 Pd/Zn Atomic Ratios (%) for the series of Pd_xZn_{1-x} NCs determined by ICP-MS and EDS.

Fig. S2 (a) HAADF-STEM image of Pd_{0.90}Zn_{0.10}, (b) Pd mapping in green, (c) Zn mapping in red, and (d) Overlapped mapping of Pd and Zn. Scale bar: 200 nm.

Fig. S3 (a) HAADF-STEM image of Pd_{0.84}Zn_{0.16}, (b) Pd mapping in green, (c) Zn mapping in red, and (d) overlapped mapping of Pd and Zn. Scale bar: 200 nm.

Fig. S4 TEM image of the irregularity Pd NCs which were synthesized in the absence of Zn precursor.

Fig. S5 TEM image of $Pd_{0.77}Zn_{0.23}$ NCs alloy which was synthesized in the absence of DMF.

Fig. S6 TEM image of $Pd_{0.77}Zn_{0.23}$ NCs alloy which was synthesized in the absence of PVP.

Fig. S7 The representative TEM images of $Pd_{0.77}Zn_{0.23}$ NCs obtained with different precursor species. Replacing $ZnCl_2$ with (a-b) $Zn(NO_3)_2$ and (c-d) $Zn(acac)_2$.

Fig. S8 CV of the Pd_xZn_{1-x} NCs and Pd/C catalyst in Ar-saturated in 0.1 M HClO₄ at a scan rate of 50 mV s⁻¹.

Fig. S9 CO stripping voltammograms of (a) Pd/C, (b) $Pd_{0.90}Zn_{0.10}$, (c) $Pd_{0.84}Zn_{0.16}$ and (d) $Pd_{0.77}Zn_{0.23}$ NCs in 0.1 M HClO₄ at a scan rate of 20 mV s⁻¹.

Fig. S10 CV curves of $Pd_{0.68}Zn_{0.32}$ and Pd/C catalyst in 0.1 M HClO₄ and 0.5 M HCOOH at a scan rate of 50 mV s⁻¹.

Table S2 Formic acid oxidation behavior on various Pd or Pd-based electrocatalysts is to compare itto Pd-Zn NCs catalysts.

Catalysts	Test specific activity Ma condition (mA cm _{Pd} ⁻²) (m/		Mass activity (mA mg _{Pd} ⁻²)	CO-stripping onset potential (V)	Ref
Pd _{0.77} Zn _{0.23}	0.1 м HClO ₄ and 0.5 м HCOOH	13.5	1945.0	0.48	this
Pd bipyramids	0.5 м HClO ₄ and 0.5 м HCOOH	20.8	/	/	1
Pd ₃ Pt Half-Shells	0.5 м HClO ₄ and 0.5 м HCOOH	/	318.0	0.63	2
np-Pd ₅₀ Cu ₅₀	$0.1 $ M $$ HClO $_4 $ and $0.1 $ M HCOOH	6.40	640.5	0.68	3
Cu–Pd multipods	0.1 M HClO ₄ and 1 M HCOOH	2.14	/	0.89	4
Pd nanochains	0.5 м H_2SO_4 and 0.5 м HCOOH	40.2	283.8	0.80	5
CuPd@Pd tetrahedra	0.5 $$ M $$ H_2SO_4 $$ and 0.5 $$ M HCOOH $$	4.93	501.8	0.52	6
PdNiCu/C	0.5 $$ M $$ H $_2$ SO $_4$ and 0.5 $$ M HCOOH	3.30	792.0	0.70	7
ordered Pd ₃ Fe/C	0.5 м H ₂ SO ₄ and 0.5 м HCOOH	/	696.4	/	8
Pd–Cu Tripods	0.5 м HClO ₄ and 0.5 м HCOOH	5.81	1580.0	/	9
Pd-Cu network	0.5 м H ₂ SO ₄ and 0.5 м HCOOH	1.50	517.0	1	10
PdNi nanowire	0.5 м H_2SO_4 and 0.5 м НСООН	/	604.3	/	11

Pd–Ni–P	0.5 M H_2SO_4 and 0.5 M HCOOH	/	1457.0	/	12
Pd-Fe/RGO	0.1 M H ₂ SO ₄ and 0.5 M HCOOH	2.71	1000.0	/	13
Pd ₄ Ni/rGO	0.5 M H ₂ SO ₄ and 0.5 M HCOOH	/	1435.0	/	14
Pd–Mo ₂ N/rGO	0.5 M H_2SO_4 and 0.5 M HCOOH	1.03	532.7	0.82	15
PdO/Pd-CeO ₂ hollow sphere	0.5 M H ₂ SO ₄ and 0.5 M HCOOH	/	1620.0	0.69	16
PdAu/rGO	0.5 м H_2SO_4 and 0.5 м HCOOH	3.67	2040.0	0.68	17

Ref:

- 1. S.-I. Choi, J. A. Herron, J. Scaranto, H. Huang, Y. Wang, X. Xia, T. Lv, J. Park, H.-C. Peng, M. Mavrikakis and Y. Xia, *ChemCatChem*, 2015, **7**, 2077-2084.
- 2. X. Yan, X. Hu, G. Fu, L. Xu, J. M. Lee and Y. Tang, *Small*, 2018, **14**, e1703940.
- 3. C. X. Xu, Y. Q. Liu, J. P. Wang, H. R. Geng and H. J. Qiu, J Power Sources, 2012, 199, 124-131.
- 4. D. Chen, P. C. Sun, H. Liu and J. Yang, J. Mater. Chem. A, 2017, 5, 4421-4429.
- 5. J.-N. Zheng, M. Zhang, F.-F. Li, S.-S. Li, A.-J. Wang and J.-J. Feng, *Electrochimica Acta*, 2014, **130**, 446-452.
- 6. Y. Chen, Y. Yang, G. Fu, L. Xu, D. Sun, J.-M. Lee and Y. Tang, J. Mater. Chem. A, 2018, 6, 10632-10638.
- 7. M. Y. Li, R. Q. Liu, G. Y. Han, Y. N. Tian, Y. Z. Chang and Y. M. Xiao, *Chin. J. Chem.*, 2017, **35**, 1405-1410.
- 8. Z. Liu, G. Fu, J. Li, Z. Liu, L. Xu, D. Sun and Y. Tang, *Nano Res.*, 2018, DOI: 10.1007/s12274-018-2051-7, 1-11.
- 9. L. Zhang, S.-I. Choi, J. Tao, H.-C. Peng, S. Xie, Y. Zhu, Z. Xie and Y. Xia, *Adv. Funct. Mater.*, 2014, **24**, 7520-7529.
- 10. F. Yang, Y. Zhang, P. F. Liu, Y. Cui, X. R. Ge and Q. S. Jing, *Int. J. Hydrog. Energy*, 2016, **41**, 6773-6780.
- 11. D. Bin, B. Yang, F. Ren, K. Zhang, P. Yang and Y. Du, J. Mater. Chem. A, 2015, **3**, 14001-14006.
- 12. X. Liang, B. Liu, J. Zhang, S. Lu and Z. Zhuang, *Chem Commun (Camb)*, 2016, **52**, 11143-11146.
- 13. A. Feng, J. Bai, W. Shao, W. Hong, Z.-q. Tian and Z. Xiao, *Int. J. Hydrog. Energy*, 2017, **42**, 15196-15202.
- 14. S. Z. Hu, F. Munoz, J. Noborikawa, J. Haan, L. Scudiero and S. Ha, Appl. Catal. B-Environ., 2016, 180, 758-765.
- 15. H. J. Yan, Y. Q. Jiao, A. P. Wu, C. G. Tian, L. Wang, X. M. Zhang and H. G. Fu, *J. Mater. Chem. A*, 2018, **6**, 7623-7630.
- 16. L. L. Zhang, L. X. Ding, Y. Luo, Y. H. Zeng, S. Q. Wang and H. H. Wang, *Chem. Eng. J.*, 2018, **347**, 193-201.
- 17. J. Liu, Y. Zheng, Z. Hong, K. Cai, F. Zhao and H. Han, *Sci. Adv.*, 2016, **2**.